
Category Theory Applied to Functional
Programming

Juan Pedro Villa Isaza

Departamento de Informática y Sistemas
Escuela de Ingeniería
Universidad EAFIT
Medellín, Colombia

2014

“Why is a raven like a writing-desk?”
—Carroll (2004, p. 79)

Category Theory Applied to Functional
Programming

Juan Pedro Villa Isaza

Systems Engineering undergraduate project

Supervisor: Andrés Sicard Ramírez

Departamento de Informática y Sistemas
Escuela de Ingeniería
Universidad EAFIT
Medellín, Colombia

2014

To Abuelita

Acknowledgements

I’m very grateful to my supervisor, Andrés Sicard Ramírez, especially for
introducing me to category theory and functional programming, to my par-
ents, Ana María Isaza Builes and Carlos Fernando Villa Gómez, and to my
boyfriend and proofreader, Nicolás Arbeláez Estrada. I thank you all for
your support and encouragement, and for not running out of patience with
me. And last but not least, I’m very thankful to the examiners, Francisco
José Correa Zabala and Juan Francisco Cardona McCormick, to the previ-
ous and current Systems Engineering undergraduate projects coordinators,
Hernán Darío Toro Escobar and Edwin Nelson Montoya Múnera, respec-
tively, to the EAFIT Logic and Computation seminar 2013 attendees, and
to my psychologist, María Paula Valderrama López.

Errata
• February 15, 2019: In example 5.2.4, concat is a natural transforma-

tion from the [] . [] functor and into the [] functor (instead of from
and into the [] functor). Thanks to Paulo Villela for reporting!

v

Deixa-te levar pela criança que foste.
—Saramago (2006)

Sempre chegamos ao sítio aonde nos
esperam.

—Saramago (2008)

Abstract

We study some of the applications of category theory to functional pro-
gramming, particularly in the context of the Haskell functional program-
ming language, and the Agda dependently typed functional programming
language and proof assistant. More specifically, we describe and explain the
concepts of category theory needed for conceptualizing and better under-
standing algebraic data types and folds, functors, monads, and parametri-
cally polymorphic functions. With this purpose, we give a detailed account
of categories, functors and endofunctors, natural transformations, monads
and Kleisli triples, algebras and initial algebras over endofunctors, among
others. In addition, we explore all of these concepts from the standpoints of
categories and programming in Haskell, and, in some cases, Agda. In other
words, we examine functional programming through category theory.

Keywords: Agda, category theory, functional programming, Haskell.

ix

Contents

Acknowledgements v

Abstract ix

Contents xi

1 Introduction 1
1.1 Summary of the Project . 2
1.2 Audience and Prerequisites 2
1.3 Overview of the Project . 2
1.4 References . 4
1.5 Notes . 6

2 Categories 7
2.1 Categories . 8
2.2 A Category for Haskell . 15
2.3 A Category for Agda . 17
2.4 References . 19

3 Constructions 21
3.1 Isomorphisms . 21
3.2 Initial and Terminal Objects 21
3.3 Products and Coproducts . 24
3.4 References . 27

4 Functors 29
4.1 Functors . 30
4.2 Functors in Haskell . 33
4.3 Functors in Agda . 44
4.4 References . 47

xi

xii Contents

5 Natural Transformations 49
5.1 Natural Transformations . 50
5.2 Natural Transformations in Haskell 53
5.3 References . 58

6 Monads and Kleisli Triples 59
6.1 Monads and Kleisli Triples . 60

6.1.1 Monads . 60
6.1.2 Kleisli Triples . 63
6.1.3 Equivalence of Monads and Kleisli Triples 64

6.2 Monads and Kleisli Triples in Haskell 71
6.2.1 Monads in Haskell . 71
6.2.2 Kleisli Triples in Haskell 78
6.2.3 Equivalence of Monads and Kleisli Triples in Haskell . 84

6.3 Monads and Kleisli Triples in Agda 85
6.3.1 Monads in Agda . 85
6.3.2 Kleisli Triples in Agda 89
6.3.3 Equivalence of Monads and Kleisli Triples in Agda . . 93

6.4 References . 93

7 Algebras and Initial Algebras 95
7.1 Algebras and Initial Algebras 96
7.2 Algebras and Initial Algebras in Haskell 103
7.3 References . 107

8 Conclusions 109
8.1 Future Work . 110

8.1.1 Adjoints . 110
8.1.2 Applicative functors 111
8.1.3 Categories . 111
8.1.4 Folds . 111
8.1.5 Monoids . 112

Bibliography 113

Chapter 1

Introduction

Race de Caïn, au ciel monte,
Et sur la terre jette Dieu !

—Baudelaire (1857, v. 16)

Category theory is a branch of mathematics developed in the 1940s which
has come to occupy a central position in computer science. Broadly, it is a
convenient and powerful conceptual framework for structures and systems
of structures (Mac Lane 1998, p. vii; Marquis 2013, p. 1; Wolfram 2002,
p. 1154).

In computer science, category theory allows us to formulate definitions
and theories of concepts, or to analyze the coherence of existing formu-
lations, to carry out proofs, to discover and exploit relations with other
fields, to deal with abstraction and representation independence, to for-
mulate conjectures and research directions, and to unify concepts (Goguen
1991, pp. 49–50). Moreover, category theory contributes to areas such as
automata theory, domain theory, functional programming, polymorphism,
semantics, type theory, among others (Marquis 2013, p. 23; Pierce 1991,
p. xi; Poigné 1992, p. 415). In particular, category theory can be viewed as
a formalization of operations on data types and as a foundational theory of
functions, which provides a sound basis for functional programming (Poigné
1992, p. 414; Wolfram 2002, p. 1154).

According to Elkins (2009, p. 73) and Yorgey (2009, pp. 50–51), several
concepts of functional programming languages, such as Agda (Norell 2007;
The Agda Team 2014), Haskell (Peyton Jones 2003), Miranda (Turner 1985),
ML (Milner 1984), among others, are based on concepts of category theory,
but one can be a perfectly competent functional programmer without knowl-
edge of these theoretical foundations. In spite of that, category theory can be

1

2 1. Introduction

applied to functional programming with the purpose of, for instance, better
understanding concepts such as algebraic data types, applicative functors,
functors, monads, and polymorphism, and thus becoming a better program-
mer.

In this regard, we aim to explore the category-theoretical foundations
of some of the concepts of functional programming listed above. In other
words, we aim to examine functional programming through category theory.

1.1 Summary of the Project
This is an undergraduate project submitted in partial fulfillment of the re-
quirements for the degree of Systems Engineering at EAFIT University1.
As a summary of the project proposal, our objective is to study some of the
applications of category theory to functional programming in Haskell and
Agda. More specifically, our goal is to describe and explain the concepts of
category theory needed for conceptualizing and better understanding alge-
braic data types, functors, monads, and polymorphism.

1.2 Audience and Prerequisites
The reader of this project is a mathematically inclined functional program-
mer. We assume a working knowledge of mathematics and functional pro-
gramming in Haskell and Agda. If any further background material is re-
quired, some suggestions can be found in the references in Section 1.4 or in
the references at the end of each chapter.

1.3 Overview of the Project
This project is divided into six chapters organized like the tree diagram in
Figure 1.1.

• In Chapter 2 (Categories), we define categories and commutative dia-
grams, and the categories which will allow us to relate category theory
to functional programming in Haskell and Agda.

• In Chapter 3 (Constructions), we describe some basic constructions
in categories (isomorphisms, initial and terminal objects, and prod-

1http://www.eafit.edu.co.

http://www.eafit.edu.co

1.3. Overview of the Project 3

2 (Categories)

3 (Constructions)

4 (Functors)

5 (Natural Transformations)

6 (Monads and Kleisli Triples)

7 (Algebras and Initial Algebras)

Figure 1.1: Overview of the project.

ucts and coproducts), which we use for describing some concepts and
examples in all subsequent chapters.

• In Chapter 4 (Functors), we study functors and endofunctors in order
to conceptualize and better understand functors in Haskell and Agda.

• In Chapter 5 (Natural Transformations), we explore the connection be-
tween natural transformations and polymorphic functions in Haskell.
This chapter completes the trinity of concepts category, functor, and
natural transformation, which are the basis of category theory (Mac
Lane 1998, p. vii).

• In Chapter 6 (Monads and Kleisli Triples), we give a detailed account
of monads and Kleisli triples, and their correspondence to monads in
Haskell and Agda.

• In Chapter 7 (Algebras and Initial Algebras), we describe algebras and
initial algebras over endofunctors, and their relation to algebraic data
types in Haskell.

4 1. Introduction

• Finally, Chapter 8 (Conclusions) contains our conclusions and some
ideas for future work.

Each chapter, except Chapter 3, is further subdivided into two or three
sections concerning some concepts of category theory, and their relation to
functional programming in Haskell and, in some cases, Agda. Moreover,
each chapter ends with a section of references which collects the sources of
information for all definitions and examples.

1.4 References
This section includes a list of suggestions for further reading, as well as some
bibliographical remarks. For more thorough category-theoretical reading
guides, see (Marquis 2013, pp. 48–56; Pierce 1991, § 4).

Category theory

• Most of our definitions are based on (Mac Lane 1998), which is a
standard reference on category theory, as well as (Awodey 2010).

• Marquis (2013) includes an interesting description of the history of
category theory, some of its applications, an analysis of its philosoph-
ical significance, and, perhaps more relevant, a useful programmatic
reading guide.

• As far as history is concerned, categories, functors, and natural trans-
formations were discovered by Eilenberg and MacLane (1942), but
category theory was devised in (Eilenberg and MacLane 1945). Some
of our definitions were compared with those of the latter.

• Bird and de Moor (1997) is a standard reference on the applications
of category theory to computer science.

• Some of our definitions and examples are based on (Pierce 1991),
which covers the basic concepts of category theory and some of its
applications to computer science. Besides, it includes a chapter with
interesting reading suggestions.

• Many of our definitions and some of our examples are based on (Poigné
1992), which is a complete reference on the applications of category
theory to computer science.

1.4. References 5

• Some works on category theory are not easily accessible. Fortunately,
Reprints in Theory and Applications of Categories2 contains some in-
teresting and useful books, including (Adámek, Herrlich, and Strecker
2006; Barr and Wells 2005; Barr and Wells 2012).

• The 𝑛Lab3, a wiki-lab for collaborative work on mathematics, physics,
and philosophy, is a helpful source of information about category the-
ory.

Haskell

• Among the many tutorials on Haskell, (Lipovača 2011; O’Sullivan,
Goerzen, and Stewart 2008) are highly recommended.

• Yorgey (2009) is an introduction to the standard Haskell type classes,
including categories, functors, and monads, and (Elkins 2009) is an
interesting article about how to use category theory in Haskell.

• For more information, see the Haskell wiki4.

Agda

• For an introduction to Agda, see (Bove and Dybjer 2009; Norell 2009).

• For more information, see the Agda wiki5.

Additional references

• Weisstein (2014), which is an extensive mathematics resource, was
frequently consulted for supplementary information.

• Some Stack Exchange6 sites, notably MathOverflow and Stack Over-
flow, were consulted during the development of this project.

2http://www.tac.mta.ca/tac/reprints/.
3http://ncatlab.org/nlab/.
4http://www.haskell.org.
5http://wiki.portal.chalmers.se/agda/.
6http://stackexchange.com.

http://www.tac.mta.ca/tac/reprints/
http://ncatlab.org/nlab/
http://www.haskell.org
http://wiki.portal.chalmers.se/agda/
http://stackexchange.com

6 1. Introduction

1.5 Notes
Frontispiece The illustration in page ii, John Tenniel’s Hatter engaging
in rhetoric, is taken from the Tenniel illustrations for Lewis Carroll’s Alice’s
Adventures in Wonderland7.

Haskell and Agda code

• The Haskell code was tested with GHC 7.6.3. Most of it corresponds
to or is based on standard Haskell code, and can be used as it is.

• The Agda code was tested with Agda 2.3.2.2 and the Agda standard
library 0.7 (Danielsson et al. 2013). We omit a lot of details such as
import declarations.

• All the code can be found in a Git repository which is available at
https://github.com/jpvillaisaza/abel.

Links

• This document is available for download at http://bit.ly/1cq5fwN.

• A printable version is available at http://bit.ly/1hDomqv.

For more information, send an email to jvillai@eafit.edu.co.

7http://www.gutenberg.org/ebooks/114.

https://github.com/jpvillaisaza/abel
http://bit.ly/1cq5fwN
http://bit.ly/1hDomqv
mailto:jvillai@eafit.edu.co
http://www.gutenberg.org/ebooks/114

Chapter 2

Categories

And God saw every thing that he had made,
and, behold, it was very good.

—God (1769, Genesis 1:31)

In this chapter we study categories in order to be able to study functors
and natural transformations, which are the basic concepts of category theory.
More interestingly, we see that, up to a point, the types and functions of
a functional programming language such as Haskell yield a category which
will allow us to relate category theory to functional programming.

To motivate categories, consider the subset of Haskell types and functions
depicted by the diagram in Figure 2.1, excluding composite functions. More
specifically, as types, take the unit type, (), the Boolean type, Bool, and
the natural number type, Nat1, and, as functions, take the constants-as-
functions (), True, False, and Zero, the functions Succ, isZero, and not, the
identity functions, id, and composite functions such as not . True.

Now, observe that, according to the semantics of the language, some of
the functions, such as isZero . Zero and True, are identical. Addition-
ally, we could prove, for instance, that id . Succ = Succ = Succ . id,
which exemplifies that identity functions are identities for the composition
of functions, which is associative.

In terms of category theory, the types and functions of this subset of
Haskell represent the objects and morphisms of a category, respectively, and
the statement that composition of functions is associative and has identities
means that we are in fact dealing with a category.

1Note that, at least in GHC 7.6.3, Haskell does not have a natural number data type
by itself.

7

8 2. Categories

Bool

Nat

()

True
False Zero

Succ

()

id

id

id

not isZero

Figure 2.1: A subset of Haskell.

In the remainder of this chapter, we define the concepts of category and
commutative diagram, and give some examples of categories, including the
category of sets and functions. In addition, we describe categories of types
and functions for Haskell and Agda.

2.1 Categories

We begin with the concept of category, which will be found everywhere in
our development.

Definition 2.1. A category 𝒞 consists of:

• Objects 𝑎, 𝑏, 𝑐, ...

• Morphisms or arrows 𝑓 , 𝑔, ℎ, ...

• For each morphism 𝑓 , domain and codomain objects 𝑎 = dom(𝑓) and
𝑏 = cod(𝑓), respectively. We then write 𝑓 ∶ 𝑎 → 𝑏.

• For each object 𝑎, an identity morphism id𝑎 ∶ 𝑎 → 𝑎.

• For each pair of morphisms 𝑓 ∶ 𝑎 → 𝑏 and 𝑔 ∶ 𝑏 → 𝑐, a composite
morphism 𝑔 ∘ 𝑓 ∶ 𝑎 → 𝑐. That is, for each pair of morphisms 𝑓 and
𝑔 with cod(𝑓) = dom(𝑔), a composite morphism 𝑔 ∘ 𝑓 ∶ dom(𝑓) →
cod(𝑔). We may then draw a diagram like that of Figure 2.2.

2.1. Categories 9

𝑎 𝑏

𝑐

𝑓

𝑔
𝑔 ∘ 𝑓

Figure 2.2: Composition of morphisms.

Composition of morphisms associates to the right. Therefore, for all
morphisms 𝑓 ∶ 𝑎 → 𝑏, 𝑔 ∶ 𝑏 → 𝑐, and ℎ ∶ 𝑐 → 𝑑, ℎ ∘ 𝑔 ∘ 𝑓 denotes
ℎ ∘ (𝑔 ∘ 𝑓).

The category is subject to the following axioms:

• For all morphisms 𝑓 ∶ 𝑎 → 𝑏, 𝑔 ∶ 𝑏 → 𝑐, and ℎ ∶ 𝑐 → 𝑑,

ℎ ∘ (𝑔 ∘ 𝑓) = ℎ ∘ 𝑔 ∘ 𝑓 = (ℎ ∘ 𝑔) ∘ 𝑓 , (2.1)

that is, composition of morphisms is associative or, equivalently, the
diagram in Figure 2.3a is commutative.

• For all morphisms 𝑓 ∶ 𝑎 → 𝑏,

id𝑏 ∘ 𝑓 = 𝑓 = 𝑓 ∘ id𝑎 , (2.2)

that is, identity morphisms are identities for the composition of mor-
phisms or, equivalently, the diagram in Figure 2.3b is commutative.

“And what is the use of a book without
pictures or conversations?”

—Carroll (2004, p. 13)

Definition 2.2. We often use diagrams consisting of objects and morphisms
of a category, like those of Figures 2.2 and 2.3. Such a diagram in a category
𝒞 is said to be commutative, or to commute, when, for each pair of objects
𝑎 and 𝑏, any two paths leading from 𝑎 to 𝑏 yield, by composition, equal

10 2. Categories

𝑎 𝑏

𝑐 𝑑

𝑓

𝑔

ℎ

𝑔 ∘ 𝑓
ℎ ∘ 𝑔

(a) The associativity axiom.

𝑎 𝑎

𝑏 𝑏

id𝑎

id𝑏

𝑓 𝑓 𝑓

(b) The identity axiom.

Figure 2.3: Axioms for categories.

morphisms from 𝑎 to 𝑏. For instance, if we say that the diagram in Figure
2.4 is commutative, we mean that

𝑔′ ∘ 𝑓 ′ = 𝑔 ∘ 𝑓 .

In this way, “commutative diagrams are just a convenient way to visualize
equalities of morphisms” (Poigné 1992, p. 434).

𝑎 𝑏

𝑏′ 𝑐

𝑓

𝑔𝑓 ′

𝑔′

Figure 2.4: A commutative square.

Remark 2.1. Moreover, commutative diagrams are closed under composi-
tion of diagrams in that a diagram commutes if all its subdiagrams commute.
For example, if we say that the inner triangles of the diagram in Figure 2.5
commute, then the outer diagram commutes as well, that is, if

𝑓 ′ = ℎ ∘ 𝑓 and 𝑔 = 𝑔′ ∘ ℎ,

2.1. Categories 11

then
𝑔′ ∘ 𝑓 ′ = 𝑔′ ∘ ℎ ∘ 𝑓 = 𝑔 ∘ 𝑓 .

𝑎 𝑏

𝑏′ 𝑐

𝑓

𝑓 ′
𝑔

ℎ

𝑔′

Figure 2.5: Commutative triangles.

As examples, we consider some common categories, including the empty
category, the trivial category, discrete categories, the category of sets and
functions, which is the motivating example of category theory, monoids,
which help to better understand the idea of sets with structure as categories,
and deductive systems, which is an interesting change of perspective.

Example 2.1.1. The empty category, 0, has neither objects nor morphisms.
It looks like, well, nothing. The trivial category, 1, has one object and one
(identity) morphism. It looks like the diagram in Figure 2.6a, which is a
diagram of a category, excluding the identity morphisms. The category 2
has two objects, two identity morphisms and one (non-identity) morphism
which looks like the morphism of the category in Figure 2.6b. And the
category 3 has three objects, three identity morphisms, and three (non-
identity) morphisms which look like the morphisms of the category in Figure
2.6c. In each case, there is only one way to define composition of morphisms,
and the axioms for categories obviously hold.

Example 2.1.2. A discrete category is a category whose only morphisms
are the identity morphisms. Given a set 𝐴, we get a discrete category 𝒞 in
which the objects are the elements of 𝐴 and the morphisms are the identity
morphisms, one for each 𝑥 ∈ 𝐴, which are uniquely determined by the
identity axiom. A discrete category is so determined by its objects, which
correspond exactly to its identity morphisms.

Example 2.1.3. Set is the category of sets and functions. Its objects are
sets 𝐴, 𝐵, 𝐶, ..., and its morphisms are functions 𝑓 , 𝑔, ℎ, ... Each function

12 2. Categories

𝑎

(a) The category 1.

𝑎 𝑏
𝑓

(b) The category 2.

𝑎 𝑏

𝑐

𝑓

𝑔
ℎ

(c) The category 3.

Figure 2.6: Trivial categories.

𝑓 ∶ 𝐴 → 𝐵 is composed of a domain 𝐴 = dom(𝑓), a codomain or range
𝐵 = cod(𝑓), and a rule which assigns to each element 𝑥 ∈ 𝐴 an element
𝑓(𝑥) ∈ 𝐵. For each set 𝐴, there is an identity function id𝐴 ∶ 𝐴 → 𝐴 such
that, for all 𝑥 ∈ 𝐴,

id𝐴(𝑥) = 𝑥, (2.3)

and, for each pair of morphisms 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐵 → 𝐶, there is a
composite function 𝑔 ∘ 𝑓 ∶ 𝐴 → 𝐶 such that, for all 𝑥 ∈ 𝐴,

(𝑔 ∘ 𝑓)(𝑥) = 𝑔(𝑓(𝑥)). (2.4)

Now, let us prove that this is a category. In the first place, we prove that the
associativity axiom holds for Set. Given functions 𝑓 ∶ 𝐴 → 𝐵, 𝑔 ∶ 𝐵 → 𝐶,
and ℎ ∶ 𝐶 → 𝐷, then, for all 𝑥 ∈ 𝐴:

(ℎ ∘ 𝑔 ∘ 𝑓)(𝑥)
= (by (2.4))

ℎ((𝑔 ∘ 𝑓)(𝑥))
= (by (2.4))

ℎ(𝑔(𝑓(𝑥)))
= (by (2.4))

(ℎ ∘ 𝑔)(𝑓(𝑥))
= (by (2.4))

((ℎ ∘ 𝑔) ∘ 𝑓)(𝑥)

2.1. Categories 13

In the second place, we prove that the identity axiom holds for Set. Given
a function 𝑓 ∶ 𝐴 → 𝐵, then, for all 𝑥 ∈ 𝐴:

(id𝐵 ∘ 𝑓)(𝑥)
= (by (2.4))

id𝐵(𝑓(𝑥))
= (by (2.3))

𝑓(𝑥)
= (by (2.3))

𝑓(id𝐴(𝑥))
= (by (2.4))

(𝑓 ∘ id𝐴)(𝑥)

Remark 2.2. To some extent, we are considering the objects and mor-
phisms of Set to be the sets of all sets and all functions, respectively, which
would lead to a paradox such as the set of all sets not members of them-
selves. For this reason, we ought to assume, for instance, that there is a big
enough set, the universe, and take the objects of Set to be the sets which
are members of the universe, that is, small sets. However, we shall not go
into detail about mathematical foundations of category theory2.

Example 2.1.4. A monoid is a category with just one object. A monoid
is thus determined by its morphisms, its identity morphism, and its rule for
the composition of morphisms. A monoid may then be described as a usual
monoid, that is, as a set (of morphisms) that is closed under an associative
binary operation which has an identity (morphism). More formally, given a
category 𝒞 with just one object 𝑎, we get a usual monoid 𝐶 = (𝒞M, ∘, id𝑎)
where the elements of 𝒞M are the morphisms of 𝒞. Conversely, given a
usual monoid 𝑀 = (𝑀, ∗, 𝑒), we get a category ℳ with just one object 𝑀 ,
morphisms the elements of 𝑀 , composition ∗ and identity morphism 𝑒.

Remark 2.3. Mon is the category of monoids and monoid homomor-
phisms, which we shall not describe here. This category is just one example
of the fact that any notion of sets with structure together with morphisms
that preserve that structure define a category.

2For a full account on mathematical foundations of category theory, see (Awodey 2010,
§ 1.8; Mac Lane 1998, § I.6).

14 2. Categories

Example 2.1.5. We can look at categories as deductive systems with ob-
jects formulas and morphisms deductions. In this way, domains and co-
domains are premises and conclusions, respectively. A morphism is thus
a proof of the fact that its codomain is deducible from its domain. In
particular, identity morphisms are instances of the reflexivity axiom, and
composition of morphisms is a rule of inference asserting that deductions
are transitive. Note that this is just a change of vocabulary.

Before we move on, let us revisit the motivating example of the subset
of Haskell, which we shall complete in the following section.

Example 2.1.6. The motivating example of the subset of Haskell corre-
sponds to a category. Its objects are the types (), Bool, and Nat, and its
morphisms are the constants-as-functions

• () :: () -> (),

• True and False :: () -> Bool, and

• Zero :: () -> Nat,

the functions

• Succ :: Nat -> Nat,

• not :: Bool -> Bool, and

• isZero :: Nat -> Bool,

the identity functions, id, and composite functions

• not . True, not . (not . True) :: () -> Bool, ...,

• Succ . Zero, Succ . (Succ . Zero) :: () -> Nat, ...,

• isZero . Zero, isZero . (Succ . Zero) :: () -> Bool, ...,

• and so on.

We shall not prove the associativity and identity axioms yet, but, evidently,
this subset of Haskell is a category. What would result if we considered all
of Haskell?

2.2. A Category for Haskell 15

2.2 A Category for Haskell
Having described a subset of Haskell types and functions as a category, let us
now construct a general category for Haskell. Intuitively, if we keep adding
types and functions to the category of Example 2.1.6, we get what we want.
But we have to be careful because there are some features of Haskell which
we cannot omit.

In a nutshell, Hask is the category of Haskell types and functions. As
expected, the objects of this category are Haskell types, that is, nullary type
constructors or type expressions with kind *3. For instance, the Boolean
type, Bool:

data Bool = False | True

The natural number type, Nat:

data Nat = Zero | Succ Nat

The integer types, Int and Integer, the floating-point number types, Float
and Double, the Unicode character type, Char, lists of types such as [Bool]
and [Nat], Maybe types such as Maybe Bool and Maybe Nat:

data Maybe a = Nothing | Just a

But not [] and Maybe, which are unary type constructors or type expressions
with kind * -> *.

Convention 1. However, Haskell types have bottom. For example:

undefined :: a
undefined = undefined

As a consequence, values of type Bool include True and False, but also
undefined, values of type Nat include Zero and Succ Zero, but also undefined,
and so forth, which is a difficulty4. For this reason, by “Haskell types”
we mean “Haskell types without bottom values,” which is why Hask is
sometimes considered a platonic category.

3In Haskell, type expressions are classified into different kinds, which are like types of
types. See (Peyton Jones 2003, § 4.1.1).

4See http://www.haskell.org/haskellwiki/Hask.

http://www.haskell.org/haskellwiki/Hask

16 2. Categories

As anticipated, the morphisms of Hask are Haskell functions. For in-
stance, not:

not :: Bool -> Bool
not False = True
not True = False

And isZero:

isZero :: Nat -> Bool
isZero Zero = True
isZero _ = False

For each type a, there is an identity function, id:

id :: a -> a
id x = x

And, for each pair of morphisms f :: a -> b and g :: b -> c, there is a
composite function, g . f:

infixr 9 .

(.) :: (b -> c) -> (a -> b) -> a -> c
g . f = \x -> g (f x)

As a result, the associativity axiom becomes, whenever it makes sense:

h . (g . f) = h . g . f = (h . g) . f

And the identity axiom becomes, for all functions f :: a -> b:

id . f = f = f . id

Both axioms follow immediately from rewriting using definitions. In the
first place:

(h . (g . f)) x

2.3. A Category for Agda 17

= (by definition of (.))
h ((g . f) x)

= (by definition of (.))
h (g (f x))

= (by definition of (.))
(h . g) (f x)

= (by definition of (.))
((h . g) . f) x

In the second place:

(id . f) x

= (by definition of (.))
id (f x)

= (by definition of id)
f x

= (by definition of id)
f (id x)

= (by definition of (.))
(f . id) x

From now on, we shall use Hask as described above as Haskell’s cate-
gory5.

2.3 A Category for Agda
In Agda, types are called sets and there is an infinite hierarchy of universes
Set₀, Set₁, Set₂, ..., such that Set₀ is of type Set₁, Set₁ is of type Set₂, and
so on. The first universe, Set₀ or Set, which is called the universe of small
types, and the second universe, Set₁, will be the only universes necessary for
our development (Bove and Dybjer 2009, pp. 57, 61; Norell 2009, p. 231).

Let us now construct a category analogous to Hask, the category of
Haskell types and functions, in Agda. The objects of this category are small
types, that is, types of type Set. For example, the Boolean type, Bool:

5Note that this is not an attempt to answer the question of Haskell’s category.

18 2. Categories

data Bool : Set where
true : Bool
false : Bool

And the natural number type, Nat:

data ℕ : Set where
zero : ℕ
succ : ℕ → ℕ

And the morphisms of this category are functions between small types. For
instance, not:

not : Bool → Bool
not true = false
not false = true

For each small type A, there is an identity function defined as follows:

id : {A : Set} → A → A
id x = x

And, for each pair of functions f : A → B and g: B → C, there is a composite
function, g ∘ f:

infixr 9 _∘_

∘ : {A B C : Set} → (B → C) → (A → B) → A → C
g ∘ f = λ x → g (f x)

For both of these definitions, see the module Abel.Function.
Unlike in Haskell, the associativity and identity axioms for this category

are declared and proved in Agda (see the module Abel.Function.Category):

associativity : {A B C D : Set} {f : A → B} {g : B → C} {h : C → D}
(x : A) → (h ∘ g ∘ f) x ≡ ((h ∘ g) ∘ f) x

associativity _ = refl

2.4. References 19

identity : {A B : Set} {f : A → B}
(x : A) → (id ∘ f) x ≡ f x × (f ∘ id) x ≡ f x

identity _ = refl , refl

From now on, we shall use this category as Agda’s category6 and call it
Agda.

2.4 References
The definition of category is based on (Awodey 2010, pp. 4–5; Mac Lane
1998, pp. 7–8, 289). We defined categories directly, but they can be defined
in many ways. For instance, Eilenberg and MacLane (1945) defined them
as aggregates of objects and mappings, and Mac Lane (1998) did it in terms
of metacategories and in terms of sets, as sets of objects and arrows. Other
ways include defining them as sets of objects and morphisms, just a set of
morphisms, and in terms of collections of morphisms or hom-sets.

The definition of commutative diagram is based on (Mac Lane 1998,
p. 8; Poigné 1992, pp. 434–435), but almost any reference on category theory
contains an equivalent definition. Additionally, the examples of categories
are based on (Awodey 2010, pp. 7–8; Mac Lane 1998, pp. 8–12, 21; Pierce
1991, Example 1.1.14; Poigné 1992, § 1.2.2).

Finally, the motivating example of the subset of Haskell is based on
(Pierce 1991, Example 1.1.15; Pitt 1986, pp. 7–11). For more information
about categories in Haskell, including Hask, see (Elkins 2009, p. 74; Yorgey
2009, pp. 49–51).

6Note that this is not an attempt to answer the question of Agda’s category.

Chapter 3

Constructions

In this chapter we explore some basic constructions in categories. We shall
use these constructions for describing some concepts and examples in all the
following chapters.

3.1 Isomorphisms
We shall often find the concept of isomorphism and the property of unique-
ness up to isomorphism.

Definition 3.1. Let 𝒞 be a category. A morphism 𝑓 ∶ 𝑎 → 𝑏 is an isomor-
phism if there is an inverse morphism 𝑓−1 ∶ 𝑏 → 𝑎 such that

𝑓−1 ∘ 𝑓 = id𝑎 and 𝑓 ∘ 𝑓−1 = id𝑏 . (3.1)

Objects 𝑎 and 𝑏 are isomorphic if there is an isomorphism 𝑓 ∶ 𝑎 → 𝑏. Iso-
morphic objects are often said to be identical up to isomorphism. Similarly,
an object with some property is said to be unique up to isomorphism if every
object satisfying the property is isomorphic to it.

3.2 Initial and Terminal Objects
We define initial and terminal objects, which we shall use for describing
algebras and initial algebras.

Definition 3.2. Let 𝒞 be a category. An object 0 is the initial object of 𝒞
if, for all objects 𝑎, there is a unique morphism 0 → 𝑎.

21

22 3. Constructions

Definition 3.3. Let 𝒞 be a category. An object 1 is the terminal object of
𝒞 if, for all objects 𝑎, there is a unique morphism 𝑎 → 1.

Lemma 3.1. Initial and terminal objects are unique up to isomorphism.

Proof. Let 𝒞 be a category with initial objects 0 and 0′. There are unique
morphisms 00′ ∶ 0 → 0′ and 0′

0 ∶ 0′ → 0, and 00 = id0 and 0′
0′ = id0′ . Hence,

0′
0 ∘ 00′ = id0 and 00′ ∘ 0′

0 = id0′ . That is, 0 is unique up to isomorphism.
Similarly, let 𝒞 be a category with terminal objects 1 and 1′. There

are unique morphisms 11′ ∶ 1′ → 1 and 1′
1 ∶ 1 → 1′, and 11 = id1 and

1′
1′ = id1′ . Hence, 11′ ∘ 1′

1 = id1 and 1′
1 ∘ 11′ = id1′ . That is, 1 is unique up

to isomorphism.

As examples, we consider initial and terminal objects in the categories
Set, Hask, and Agda.

Example 3.2.1. In Set, the empty set ∅ is the initial object. Given a set
𝐴, the empty function is the unique function ∅ → 𝐴. Additionally, any
singleton set {𝑥} is a terminal object. Given a set 𝐴, the function which
assigns 𝑥 to each element of 𝐴 is the unique function 𝐴 → {𝑥}.

Example 3.2.2. In Hask, the empty or uninhabited type is the initial
object of the category:

data Void

The absurd function, as defined, for instance, in (Kmett 2012), is the unique
function required to show that Void is indeed the initial object:

absurd :: Void -> a
absurd = absurd

Note that, in the absence of Convention 1, we would also have:

absurd' :: Void -> a
absurd' _ = undefined

Additionally, the unit type is the terminal object of the category:

3.2. Initial and Terminal Objects 23

data () = ()

The unit function is the unique function required to show that () really is
the terminal object:

unit :: a -> ()
unit _ = ()

Without Convention 1, we would also have:

unit' :: a -> ()
unit' _ = undefined

Example 3.2.3. In Agda, the empty type, defined in Data.Empty, is the
initial object:

data ⊥ : Set where

The ⊥-elim function, defined in Abel.Data.Empty, is the unique function
required to show that ⊥ is indeed the initial object:

⊥-elim : {A : Set} → ⊥ → A
⊥-elim ()

The unit type, defined in Data.Unit, is the terminal object:

record ⊤ : Set where
constructor tt

Or, equivalently, the unit type defined in Data.Unit.Core:

data Unit : Set where
unit : Unit

Finally, the unit function, defined in Abel.Data.Unit, is the unique function
required to show that Unit really is the terminal object:

24 3. Constructions

unit : {A : Set} → A → ⊤
unit _ = tt

Example 3.2.4. In Set, the elements of a set 𝐴 can be considered as
functions from a terminal object, that is, any singleton set, to 𝐴. More
specifically, if 𝑥 ∈ 𝐴 and 1 is a terminal object, then 𝑥 can be considered as
a function 𝑥 ∶ 1 → 𝐴 which assigns 𝑥 to the element of 1.

3.3 Products and Coproducts
In this section, we describe the concepts of product and coproduct, which
correspond to Cartesian products and disjoint unions, respectively. As ex-
amples, we consider both constructions in the categories Set, Hask, and
Agda.

Definition 3.4. A product of objects 𝑎 and 𝑏 in a category 𝒞 consists of
a product object 𝑎 × 𝑏, and projection morphisms 𝜋1 ∶ 𝑎 × 𝑏 → 𝑎 and
𝜋2 ∶ 𝑎 × 𝑏 → 𝑏, such that, for all objects 𝑐, and morphisms 𝑓 ∶ 𝑐 → 𝑎 and
𝑔 ∶ 𝑐 → 𝑏, there is a unique morphism ⟨𝑓, 𝑔⟩ ∶ 𝑐 → 𝑎 × 𝑏 such that

𝜋1 ∘ ⟨𝑓, 𝑔⟩ = 𝑓 and 𝜋2 ∘ ⟨𝑓, 𝑔⟩ = 𝑔, (3.2)

that is, the diagram in Figure 3.1 is commutative.

𝑎 × 𝑏𝑎 𝑏

𝑐

𝜋1 𝜋2

𝑓 𝑔⟨𝑓, 𝑔⟩

Figure 3.1: A product.

Example 3.3.1. In Set, the product of two sets 𝐴 and 𝐵 consists of the
Cartesian product

𝐴 × 𝐵 = {(𝑥, 𝑦) ∣ 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵}, (3.3)

3.3. Products and Coproducts 25

and two projection functions 𝜋1 ∶ 𝐴 × 𝐵 → 𝐴 and 𝜋2 ∶ 𝐴 × 𝐵 → 𝐵 such
that, for all (𝑥, 𝑦) ∈ 𝐴 × 𝐵,

𝜋1(𝑥, 𝑦) = 𝑥 and 𝜋2(𝑥, 𝑦) = 𝑦.

Given a set 𝐶, and two functions 𝑓 ∶ 𝐶 → 𝐴 and 𝑔 ∶ 𝐶 → 𝐵, there is a
unique function ⟨𝑓, 𝑔⟩ ∶ 𝐶 → 𝐴 × 𝐵 defined by

⟨𝑓, 𝑔⟩(𝑧) = (𝑓(𝑧), 𝑔(𝑧))
for all 𝑧 ∈ 𝐶. Equations (3.2) hold.
Example 3.3.2. In Hask, tuples are products:

data (,) a b = (,) a b

The projection functions are fst and snd, which extract the first and second
components of a pair, respectively:

fst :: (a,b) -> a
fst (x,_) = x

snd :: (a,b) -> b
snd (_,y) = y

The fork function is the function required to show that tuples are indeed
products:

fork :: (c -> a) -> (c -> b) -> c -> (a,b)
fork f g z = (f z,g z)

Example 3.3.3 (See module Abel.Data.Product). In Agda, products and
their projection functions are defined as follows:

data _×_ (A B : Set) : Set where
, : A → B → A × B

proj₁ : {A B : Set} → A × B → A
proj₁ (x , _) = x

proj₂ : {A B : Set} → A × B → B
proj₂ (_ , y) = y

26 3. Constructions

The required function to satisfy the definition of products is:

⟨_,_⟩ : {A B C : Set} → (C → A) → (C → B) → C → A × B
⟨_,_⟩ f g z = f z , g z

Definition 3.5. A coproduct of objects 𝑎 and 𝑏 in a category 𝒞 consists
of a coproduct object 𝑎 + 𝑏, and injection morphisms 𝜄1 ∶ 𝑎 → 𝑎 + 𝑏 and
𝜄2 ∶ 𝑏 → 𝑎 + 𝑏, such that, for all objects 𝑐, and morphisms 𝑓 ∶ 𝑎 → 𝑐 and
𝑔 ∶ 𝑏 → 𝑐, there is a unique morphism [𝑓, 𝑔] ∶ 𝑎 + 𝑏 → 𝑐 such that

[𝑓, 𝑔] ∘ 𝜄1 = 𝑓 and [𝑓, 𝑔] ∘ 𝜄2 = 𝑔, (3.4)

that is, the diagram in Figure 3.2 is commutative.

𝑎 + 𝑏𝑎 𝑏

𝑐

𝜄1 𝜄2

𝑓 𝑔[𝑓, 𝑔]

Figure 3.2: A coproduct.

Example 3.3.4. In Set, the coproduct of two sets 𝐴 and 𝐵 consists of the
disjoint union

𝐴 + 𝐵 = ({1} × 𝐴) ∪ ({2} × 𝐵), (3.5)

and two injection functions 𝜄1 ∶ 𝐴 → 𝐴 + 𝐵 and 𝜄2 ∶ 𝐵 → 𝐴 + 𝐵 such that,
for all 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵,

𝜄1(𝑥) = (1, 𝑥) and 𝜄2(𝑦) = (2, 𝑦). (3.6)

Given a set 𝐶, and two functions 𝑓 ∶ 𝐴 → 𝐶 and 𝑔 ∶ 𝐵 → 𝐶, there is a
unique function [𝑓, 𝑔] ∶ 𝐴 + 𝐵 → 𝐶 defined by

[𝑓, 𝑔](𝜄1(𝑥)) = 𝑓(𝑥) and [𝑓, 𝑔](𝜄2(𝑦)) = 𝑔(𝑦) (3.7)

for all 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵. Equations (3.4) hold.

3.4. References 27

Example 3.3.5. In Hask, coproducts and their injection functions are
defined by the Either type:

data Either a b = Left a | Right b

The either function is the function required to satisfy the definition of a
coproduct:

either :: (a -> c) -> (b -> c) -> Either a b -> c
either f _ (Left x) = f x
either _ g (Right y) = g y

Example 3.3.6 (See module Abel.Data.Sum). In Agda, sums or disjoint
unions are coproducts:

data _+_ (A B : Set) : Set where
inj₁ : (x : A) → A + B
inj₂ : (y : B) → A + B

Finally, the required function to show that sums are indeed coproducts is
defined as follows:

[_,_] : {A B C : Set} (f : A → C) (g : B → C) → A + B → C
[_,_] f _ (inj₁ x) = f x
[_,_] _ g (inj₂ y) = g y

3.4 References
This chapter is based on (Pierce 1991, pp. 15–19; Poigné 1992, pp. 439–440,
444; Mac Lane 1998, p. 63).

Chapter 4

Functors

Category has been defined in order to be able
to define functor...

—Mac Lane (1998, p. 18)

In this chapter we explore mathematical functors, and functors in Haskell
and Agda. Mapping over lists, which is accomplished with the map function,
is “a dominant idiom in Haskell” (Lipovača 2011, p. 146). The type signature
of the map function is:

map :: (a -> b) -> [a] -> [b]

According to (Marlow 2010, p. 190), given a function f and a list xs, map f
xs is the list obtained by applying f to each element in xs. In other words:

map f [x1, x2, ..., xn] = [f x1, f x2, ..., f xn]

Or, better:

map f [x1, x2, ...] = [f x1, f x2, ...]

The definition of the map function is:

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs

29

30 4. Functors

Even though this is the correct definition of the map function (it applies a
function to all the elements of a list), it is possible to implement alternative
definitions. For instance:

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : f x : map f xs

This alternative map function applies a function to each element in a list and
duplicates each result.

Deciding whether the former or the latter map function is the correct one
for mapping over lists requires a more general approach. This is achieved
with the definition of the Functor type class, which is used for types that
can be mapped over and which generalizes the map function as a uniform
action over a parameterized type such as [a] or Maybe a.

However, the definition of the Functor type class is not enough to deter-
mine what a “uniform action over a parameterized type” is. On the other
hand, a comment in (Peyton Jones 2003, p. 88) states that all instances of
the Functor type class should satisfy the functor laws. These laws, which are
not part of the definition of functors in Haskell, guarantee that a “uniform
action over a parameterized type” is actually uniform.

Functors in Haskell implement mathematical functors (that is, functors
in category theory) and the functor laws correspond to the conditions that
a mathematical functor must satisfy in order to be a functor. Studying
mathematical functors may not be necessary for uniformly mapping over
a parameterized type, but it may be very useful for better understanding
what that means.

4.1 Functors
Basically, a functor or morphism of categories maps the objects and mor-
phisms of a category to objects and morphisms of another category.

Definition 4.1. Let 𝒞 and 𝒟 be categories. A functor F ∶ 𝒞 → 𝒟 assigns
to each object 𝑎 in 𝒞 an object FO(𝑎) in 𝒟, and to each morphism 𝑓 ∶ 𝑎 → 𝑏
in 𝒞 a morphism FM(𝑓) ∶ FO(𝑎) → FO(𝑏) in 𝒟, such that, for all objects 𝑎
in 𝒞,

FM(id𝑎) = idFO(𝑎) , (4.1)

4.1. Functors 31

and, for all morphisms 𝑓 ∶ 𝑎 → 𝑏 and 𝑔 ∶ 𝑏 → 𝑐 in 𝒞,

FM(𝑔 ∘ 𝑓) = FM(𝑔) ∘ FM(𝑓). (4.2)

A functor from a category to itself is called an endofunctor.

A simple example of functors is the power set operation, which yields an
endofunctor in Set.

Example 4.1.1. The power set endofunctor P ∶ Set → Set assigns to each
set 𝐴 the set of all subsets of 𝐴, that is,

PO(𝐴) = {𝑋 ∣ 𝑋 ⊆ 𝐴}, (4.3)

and to each function 𝑓 ∶ 𝐴 → 𝐵 a function PM(𝑓) ∶ PO(𝐴) → PO(𝐵) such
that, for all 𝑋 ∈ PO(𝐴),

PM(𝑓)(𝑋) = {𝑓(𝑥) ∣ 𝑥 ∈ 𝑋}. (4.4)

In order to see that this defines a functor, we prove, in the first place, that
(4.1) holds for all 𝑋 ∈ PO(𝐴):

PM(id𝐴)(𝑋)
= (by (4.4) with 𝑓 = id𝐴)

{id𝐴(𝑥) ∣ 𝑥 ∈ 𝑋}
= (by (2.3))

{𝑥 ∣ 𝑥 ∈ 𝑋}
=

𝑋
= (by (2.3) with 𝐴 = PO(𝐴) and 𝑥 = 𝑋)

idPO(𝐴)(𝑋)

In the second place, we prove that (4.2) holds for all 𝑋 ∈ PO(𝐴):

PM(𝑔 ∘ 𝑓)(𝑋)
= (by (4.4) with 𝑓 = 𝑔 ∘ 𝑓)

{(𝑔 ∘ 𝑓)(𝑥) ∣ 𝑥 ∈ 𝑋}
= (by (2.4))

{𝑔(𝑓(𝑥)) ∣ 𝑥 ∈ 𝑋}

32 4. Functors

= (by (4.4) with 𝑓 = 𝑔 and 𝑋 = {𝑓(𝑥) ∣ 𝑥 ∈ 𝑋})
PM(𝑔)({𝑓(𝑥) ∣ 𝑥 ∈ 𝑋})

= (by (4.4))
PM(𝑔)(PM(𝑓)(𝑋))

= (by (2.4) with 𝑓 = PM(𝑓), 𝑔 = PM(𝑔), and 𝑥 = 𝑋)
(PM(𝑔) ∘ PM(𝑓))(𝑋)

“There are many functors between two given categories, and the ques-
tion of how they are connected suggests itself” (Marquis 2013, p. 11). For
instance, there is always the identity endofunctor from a category to itself.

Example 4.1.2. Let 𝒞 be a category. The identity endofunctor I ∶ 𝒞 → 𝒞
sends all objects and morphisms of 𝒞 to themselves. In detail, for all objects
𝑎,

IO(𝑎) = 𝑎, (4.5)

and, for all morphisms 𝑓 ,

IM(𝑓) = 𝑓 . (4.6)

In order to see that this defines a functor, we prove, in the first place, that
(4.1) holds:

IM(id𝑎)
= (by (4.6) with 𝑓 = id𝑎)

id𝑎

= (by (4.5))
idIO(𝑎)

In the second place, we prove that (4.2) holds:

IM(𝑔 ∘ 𝑓)
= (by (4.6) with 𝑓 = 𝑔 ∘ 𝑓)

𝑔 ∘ 𝑓
= (by (4.6) with 𝑓 = 𝑔 and (4.6))

IM(𝑔) ∘ IM(𝑓)

4.2. Functors in Haskell 33

4.2 Functors in Haskell

Functors in Haskell are defined by “the most basic and ubiquitous type class
in the Haskell libraries” (Yorgey 2009, p. 18), the Functor type class, which
is exported by the Haskell Prelude:

class Functor f where
fmap :: (a -> b) -> f a -> f b

It is used for types that can be mapped over, and generalizes the map func-
tion on lists with a uniform action over a parameterized type. Intuitively,
functors represent containers or computational contexts, but we are more
interested in their definition and its relation to that of mathematical func-
tors.

It is important to note that f is a type constructor rather than a type (its
kind is * -> *, not *). [] and Maybe are examples of such type constructors.
The result of applying a type constructor to a type (for example, Int or
Bool) is a type or concrete type (that is, something of kind *). Therefore,
the kinds of [] Int (that is, [Int]) and Maybe Int are both *. As another
example, since the kind of Either is * -> * -> *, it cannot be declared as
an instance of the Functor type class. However, a type constructor can be
partially applied and something like Either a can be declared as an instance
of Functor.

The fact that f is a type constructor can be made explicit using the
KindSignatures language option:

class Functor (f :: * -> *) where
fmap :: (a -> b) -> f a -> f b

The kind signature of f shows that it corresponds to the object mapping of
a mathematical functor (that is, FO): it sends objects of Hask (types) to
objects of Hask (types).

The fmap function is curried and can be rewritten with extra (and un-
necessary) parentheses:

class Functor (f :: * -> *) where
fmap :: (a -> b) -> (f a -> f b)

34 4. Functors

The type of fmap shows that it corresponds to the morphism mapping of a
mathematical functor (that is, FM): it sends morphisms of Hask (functions)
to morphisms of Hask (functions).

Instances of the Functor type class correspond to functors (more pre-
cisely, endofunctors) from Hask to Hask with the type constructor and the
fmap function as the required object and morphism mappings.

Although functors should obey the functor laws, this is not mandatory
when declaring an instance of the Functor type class. The first law can be
stated as:

fmap id = id

Polymorphism in Haskell allows us to write just id in both sides of this
law, but the types of each id are different (which is more obvious when
comparing this with (4.1)). A more precise way of stating the first law in
Haskell follows:

fmap (id :: a -> a) = (id :: f a -> f a)

The second law can be stated as:

fmap (g . f) = fmap g . fmap f

This law corresponds to (4.2). Proving both of these laws amounts to proving
that an instance of the Functor type class is actually a functor.

Remark 4.1. In the following examples, we shall prove the functor laws
by hand. A different approach is that of (Jeuring, Jansson, and Amaral
2012), which develops a framework that supports testing such laws using
QuickCheck.

We have already described the identity endofunctor for any category. In
particular, there is the identity functor of Hask.

Example 4.2.1. The identity functor of Hask, which is just an instance of
the identity endofunctor as described in Example 4.1.2, is defined as follows1:

1Using the InstanceSigs language option.

4.2. Functors in Haskell 35

newtype Identity a = Identity {unIdentity :: a}

instance Functor Identity where
fmap :: (a -> b) -> Identity a -> Identity b
fmap f (Identity x) = Identity (f x)

Common examples of functors in Haskell include Maybe and lists. We
shall use these functors again when studying natural transformations and
monads.

Example 4.2.2. A basic example of functors in Haskell is the Maybe functor.
Its type constructor is the Maybe type constructor:

data Maybe a = Nothing | Just a

Its fmap function is defined as follows:

instance Functor Maybe where
fmap :: (a -> b) -> Maybe a -> Maybe b
fmap _ Nothing = Nothing
fmap f (Just x) = Just (f x)

Basically, the Maybe type constructor sends types a to types Maybe a, a value
of type Maybe a either contains a value of type a or is empty, and the fmap
function sends functions a -> b to functions Maybe a -> Maybe b. This
instance satisfies the laws. First, we prove that (4.1) holds.

Case Nothing:

fmap id Nothing

= (by definition of fmap)
Nothing

= (by definition of id)
id Nothing

Case (Just x):

fmap id (Just x)

36 4. Functors

= (by definition of fmap)
Just (id x)

= (by definition of id)
Just x

= (by definition of id)
id (Just x)

Second, we prove that (4.2) holds.

Case Nothing:

(fmap g . fmap f) Nothing

= (by definition of (.))
fmap g (fmap f Nothing)

= (by definition of fmap)
fmap g Nothing

= (by definition of fmap)
Nothing

= (by definition of fmap)
fmap (g . f) Nothing

Case Just x:

fmap (g . f) (Just x)

= (by definition of fmap)
Just ((g . f) x)

= (by definition of (.))
Just (g (f x))

= (by definition of fmap)
fmap g (Just (f x))

= (by definition of fmap)
fmap g (fmap f (Just x))

= (by definition of (.))
(fmap g . fmap f) (Just x)

4.2. Functors in Haskell 37

Example 4.2.3. Another common example of functors in Haskell is the []
(list) functor. Its type constructor is [], and its fmap function is the map
function:

instance Functor [] where
fmap :: (a -> b) -> [a] -> [b]
fmap _ [] = []
fmap f (x:xs) = f x : fmap f xs

Or:

instance Functor [] where
fmap :: (a -> b) -> [a] -> [b]
fmap = map

The [] type constructor sends types a to types [a], that is, lists of a, and
the fmap or map function, which we talked about earlier, sends functions of
type a -> b to functions of type [a] -> [b]. In order to see that this instance
satisfies the laws, we begin by proving (4.1) by induction.

Case []:

fmap id []

= (by definition of fmap)
[]

= (by definition of id)
id []

Case (x:xs):

fmap id (x:xs)

= (by definition of fmap)
id x : fmap id xs

= (by definition of id)
x : fmap id xs

= (by inductive hypothesis)
x:xs

38 4. Functors

= (by definition of id)
id (x:xs)

Second, we prove (4.2), also by induction.

Case []:

(fmap g . fmap f) []

= (by definition of (.))
fmap g (fmap f [])

= (by definition of fmap)
fmap g []

= (by definition of fmap)
[]

= (by definition of fmap)
fmap (g . f) []

Case (x:xs):

fmap (g . f) (x:xs)

= (by definition of fmap)
(g . f) x : fmap (g . f) xs

= (by definition of (.))
g (f x) : fmap (g . f) xs

= (by inductive hypothesis)
g (f x) : (fmap g . fmap f) xs

= (by definition of (.))
g (f x) : fmap g (fmap f xs)

= (by definition of fmap)
fmap g (f x : fmap f xs)

= (by definition of fmap)
fmap g (fmap f (x:xs))

= (by definition of (.))
(fmap g . fmap f) (x:xs)

4.2. Functors in Haskell 39

Additional examples of functors in Haskell include products and coprod-
ucts, which are some of the constructions we discussed in the previous chap-
ter, and functions, which is an interesting case for better understanding the
type signature of fmap.

Example 4.2.4. Another usual example of functors in Haskell is the prod-
uct functor. Its type constructor is (,) a (see Example 3.3.2), and its fmap
function is uniquely defined as follows:

instance Functor ((,) a) where
fmap :: (b -> c) -> (a,b) -> (a,c)
fmap f (x, y) = (x, f y)

Let us prove that this instance satisfies the functor laws. In the first place,
we show that (4.1) holds.

fmap id (x, y)

= (by definition of fmap)
(x, id y)

= (by definition of id)
(x, y)

= (by definition of id)
id (x, y)

In the second place, we show that (4.2) holds:

(fmap h . fmap g) (x, y)

= (by definition of (.))
fmap h (fmap g (x, y))

= (by definition of fmap)
fmap h (x, g y)

= (by definition of fmap)
(x, h (g y))

= (by definition of (.))
(x, (h . g) y)

= (by definition of fmap)

40 4. Functors

fmap (h . g) (x, y)

Example 4.2.5. In a similar way, the coproduct functor is a usual example
of functors in Haskell. Its type constructor is Either a (see Example 4.2.5),
and its fmap function is uniquely defined as follows:

instance Functor (Either a) where
fmap :: (b -> c) -> Either a b -> Either a c
fmap _ (Left x) = Left x
fmap g (Right y) = Right (g y)

In order to see that this instance obeys the laws, we prove, in the first place,
that (4.1) holds.

Case (Left x):

fmap id (Left x)

= (by definition of fmap)
Left x

= (by definition of id)
id (Left x)

Case (Right y):

fmap id (Right y)

= (by definition of fmap)
Right (id y)

= (by definition of id)
Right y

= (by definition of id)
id (Right y)

In the second place, we prove that (4.2) holds.

Case (Left x):

(fmap h . fmap g) (Left x)

= (by definition of (.))

4.2. Functors in Haskell 41

fmap h (fmap g (Left x))

= (by definition of fmap)
fmap h (Left x)

= (by definition of fmap)
Left x

= (by definition of fmap)
fmap (h . g) (Left x)

Case (Right y):

(fmap h . fmap g) (Right y)

= (by definition of (.))
fmap h (fmap g (Right y))

= (by definition of fmap)
fmap h (Right (g y))

= (by definition of fmap)
Right (h (g y))

= (by definition of (.))
Right ((h . g) y)

= (by definition of fmap)
fmap (h . g) (Right y)

Example 4.2.6. An interesting example of functors in Haskell is the func-
tion functor. Its type constructor is (->) a, and its fmap function is function
composition:

instance Functor ((->) a) where
fmap :: (b -> c) -> (a -> b) -> a -> c
fmap g f = \x -> g (f x)

Or, equivalently:

instance Functor ((->) a) where
fmap :: (b -> c) -> (a -> b) -> a -> c
fmap = (.)

42 4. Functors

Let us see that this instance satisfies the functor laws. In the first place, we
prove that (4.1) holds.

fmap id f

= (by definition of fmap)
id . f

= (by (2.2))
f

= (by definition of id)
id f

In the second place, we prove that (4.2) holds.

(fmap h . fmap g) f

= (by definition of (.))
fmap h (fmap g f)

= (by definition of fmap)
fmap h (g . f)

= (by definition of fmap)
h . (g . f)

= (by (2.1))
(h . g) . f

= (by definition of fmap)
fmap (h . g) f

Since the functor laws are not part of the definition of the Functor type
class, we can declare instances which do not satisfy the laws. In the following
examples, we consider incorrect definitions of the Maybe and [] functors.

Example 4.2.7. It is possible to incorrectly define the Maybe functor (see
Example 4.2.2) as follows:

instance Functor Maybe where
fmap :: (a -> b) -> Maybe a -> Maybe b
fmap _ Nothing = Nothing
fmap _ (Just _) = Nothing

4.2. Functors in Haskell 43

Even though this definition of the fmap function is accepted by the Haskell
type checker, the following counterexample proves that it violates the first
functor law:

> fmap id (Just 0)
Nothing
> id (Just 0)
Just 0

Note that this is the only way to incorrectly declare the Maybe functor within
Hask.

Example 4.2.8. We can wrongly define the [] (list) functor too (see Ex-
ample 4.2.3). Here is the declaration we discussed at the beginning of the
chapter:

instance Functor [] where
fmap :: (a -> b) -> [a] -> [b]
fmap _ [] = []
fmap f (x:xs) = f x : f x : fmap f xs

But this is not the only way. For instance:

instance Functor [] where
fmap :: (a -> b) -> [a] -> [b]
fmap _ [] = []
fmap f (x:xs) = [f x]

However, neither of these instances satisfy the first functor law, as demon-
strated by the following counterexamples. In the first case:

> fmap id [0,1]
[0,0,1,1]
> id [0,1]
[0,1]

In the second case:

44 4. Functors

> fmap id [0,1]
[0]
> id [0,1]
[0,1]

4.3 Functors in Agda
The Agda standard library defines functors in Agda just like functors in
Haskell, that is, without the functor laws2. Abel defines functors in the
module Abel.Category.Functor, which includes the functor laws3:

record Functor (F : Set → Set) : Set₁ where

constructor mkFunctor

field

fmap : {A B : Set} → (A → B) → F A → F B

fmap-id : {A : Set} (fx : F A) → fmap id fx ≡ id fx

fmap-∘ : {A B C : Set} {f : A → B} {g : B → C}
(fx : F A) → fmap (g ∘ f) fx ≡ (fmap g ∘ fmap f) fx

The inclusion of the functor laws makes it impossible to define a functor
which is not really a functor because all instances must prove that F and
fmap satisfy the laws.

As examples, we consider all instances described in Haskell in the previ-
ous section.

Example 4.3.1 (See module Abel.Data.Maybe.Functor). The Maybe functor
in Agda is defined as follows:

functor : Functor Maybe
functor = mkFunctor fmap fmap-id fmap-∘

2See (Danielsson et al. 2013, module Category.Functor).
3We refer to propositional (intensional) equality, as defined in (Danielsson et al. 2013,

module Relation.Binary.PropositionalEquality).

4.3. Functors in Agda 45

where
fmap : {A B : Set} → (A → B) → Maybe A → Maybe B
fmap f (just x) = just (f x)
fmap _ nothing = nothing

fmap-id : {A : Set} (mx : Maybe A) → fmap id mx ≡ id mx
fmap-id (just _) = refl
fmap-id nothing = refl

fmap-∘ : {A B C : Set} {f : A → B} {g : B → C}
(mx : Maybe A) → fmap (g ∘ f) mx ≡ (fmap g ∘ fmap f) mx

fmap-∘ (just _) = refl
fmap-∘ nothing = refl

This functor corresponds to the Maybe functor in Haskell (see Example 4.2.2).

Example 4.3.2 (See module Abel.Data.List.Functor). The following instance
corresponds to the List functor in Agda:

functor : Functor List
functor = mkFunctor fmap fmap-id fmap-∘

where
fmap : {A B : Set} → (A → B) → List A → List B
fmap _ [] = []
fmap f (x ∷ xs) = f x ∷ fmap f xs

fmap-id : {A : Set} (xs : List A) → fmap id xs ≡ id xs
fmap-id [] = refl
fmap-id (x ∷ xs) = cong (_∷_ x) (fmap-id xs)

fmap-∘ : {A B C : Set} {f : A → B} {g : B → C}
(xs : List A) → fmap (g ∘ f) xs ≡ (fmap g ∘ fmap f) xs

fmap-∘ [] = refl
fmap-∘ {f = f} {g} (x ∷ xs) = cong (_∷_ (g (f x))) (fmap-∘ xs)

This definition matches that of the [] functor in Haskell (see Example 4.2.3).

Example 4.3.3 (See module Abel.Data.Product.Functor). Here is the dec-
laration of the product functor in Agda (see Example 3.3.3):

46 4. Functors

functor : {A : Set} → Functor (_×_ A)
functor {A} = mkFunctor fmap fmap-id fmap-∘

where
fmap : {B C : Set} → (B → C) → A × B → A × C
fmap g (x , y) = x , g y

fmap-id : {B : Set} (x,y : A × B) → fmap id x,y ≡ id x,y
fmap-id (x , y) = refl

fmap-∘ : {B C D : Set} {g : B → C} {h : C → D}
(x,y : A × B) → fmap (h ∘ g) x,y ≡ (fmap h ∘ fmap g) x,y

fmap-∘ (x , y) = refl

Compare this with the product functor in Haskell (see Example 4.2.4).

Example 4.3.4 (See module Abel.Data.Sum.Functor). The coproduct func-
tor in Agda (see Example 3.3.6) is defined as follows:

functor : {A : Set} → Functor (_+_ A)
functor {A} = mkFunctor fmap fmap-id fmap-∘

where
fmap : {B C : Set} → (B → C) → A + B → A + C
fmap _ (inj₁ x) = inj₁ x
fmap g (inj₂ y) = inj₂ (g y)

fmap-id : {B : Set} (x+y : A + B) → fmap id x+y ≡ id x+y
fmap-id (inj₁ _) = refl
fmap-id (inj₂ _) = refl

fmap-∘ : {B C D : Set} {g : B → C} {h : C → D}
(x+y : A + B) → fmap (h ∘ g) x+y ≡ (fmap h ∘ fmap g) x+y

fmap-∘ (inj₁ _) = refl
fmap-∘ (inj₂ _) = refl

Compare this with the coproduct functor in Haskell (see Example 4.2.5).

Example 4.3.5 (See module Abel.Function.Functor). Here is the definition
of the function functor in Agda, which corresponds to the Haskell functor
described in Example 4.2.6:

4.4. References 47

functor : {A : Set} → Functor (λ B → A → B)
functor = mkFunctor (λ g f → g ∘ f) (λ _ → refl) (λ _ → refl)

Example 4.3.6. We can try to define the alternative Maybe functor of Ex-
ample 4.2.7 in Agda:

functor : Functor Maybe
functor = mkFunctor fmap fmap-id fmap-∘

where
fmap : {A B : Set} → (A → B) → Maybe A → Maybe B
fmap f (just x) = nothing
fmap _ nothing = nothing

fmap-id : {A : Set} (mx : Maybe A) → fmap id mx ≡ id mx
fmap-id (just _) = ?
fmap-id nothing = refl

fmap-∘ : {A B C : Set} {f : A → B} {g : B → C}
(mx : Maybe A) → fmap (g ∘ f) mx ≡ (fmap g ∘ fmap f) mx

fmap-∘ (just _) = refl
fmap-∘ nothing = refl

But this code does not type check because there is a proof missing. As we
saw in Example 4.2.7, the first functor law does not hold for this definition
of the Maybe functor, so there is no way to make this instance type check in
Agda.

4.4 References
The definition of a functor is based on (Mac Lane 1998, p. 13; Poigné 1992,
p. 428), the power set and identity functors are taken from (Poigné 1992,
p. 431) and (Marquis 2013, p. 11), respectively, and the study of functors
in Haskell is based on (Lipovača 2011, pp. 146–150, 218–227; Yorgey 2009,
pp. 18–23).

Chapter 5

Natural Transformations

... and functor has been defined in order to
be able to define natural transformation.

—Mac Lane (1998, p. 18)

In this chapter we explore natural transformations and their relation to
polymorphic functions in Haskell. Despite their name, natural transforma-
tions might be “a first stumbling block” in the study of category theory,
“simply because the examples tend to raise the level of mathematical so-
phistication” (Poigné 1992, p. 433). But natural transformations are indeed
natural, especially in functional programming. It is typical to explain this
idea with examples of parametrically polymorphic functions such as append-
ing an element to a list, extracting the first component of a pair, reversing
a list, among others.

In Haskell, one such function is the head function, which extracts the
first element of a list1:

head :: [a] -> Maybe a
head [] = Nothing
head (x:_) = Just x

This is not any function, but a function between functors. More specifically,
it is a function from the [] (list) functor into the Maybe functor. Besides, it
is not just a function, but rather a family of functions indexed by Haskell
types.

1Note that this is not the standard Haskell head function.

49

50 5. Natural Transformations

The head function is natural or uniform in the sense that, given two
types a and b, a function f :: a -> b, and a list of elements of a, mapping
the function over the list and then extracting the first element of the result
is the same as extracting the first element of the list and then mapping the
function over the result:

head . fmap f = fmap f . head

That is, the diagram in Figure 5.1 is commutative.

[a]

[b]

Maybe a

Maybe b

fmap f fmap f

head

head

Figure 5.1: Naturality of the head function.

Even if this is an intuitive property of the head function and proving it is
quite simple, this property says a lot about the behavior of all the functions
that are part of the family defined by head. Most importantly, all of these
facts are abstracted by natural transformations.

5.1 Natural Transformations
Having defined categories and functors (morphisms of categories), let us now
define natural transformations (morphisms of functors).
Definition 5.1. Let F and G ∶ 𝒞 → 𝒟 be functors for two categories 𝒞 and
𝒟. A natural transformation

𝜏 ∶ F → G ∶ 𝒞 → 𝒟
assigns to each object 𝑎 in 𝒞 a morphism 𝜏𝑎 ∶ FO(𝑎) → GO(𝑎) in 𝒟, called
a component of the natural transformation, such that, for all morphisms
𝑓 ∶ 𝑎 → 𝑏 in 𝒞,

𝜏𝑏 ∘ FM(𝑓) = GM(𝑓) ∘ 𝜏𝑎, (5.1)

that is, the diagram in Figure 5.2 is commutative.

5.1. Natural Transformations 51

FO(𝑎)

FO(𝑏)

GO(𝑎)

GO(𝑏)

FM(𝑓) GM(𝑓)

𝜏𝑎

𝜏𝑏

Figure 5.2: Naturality of a natural transformation.

As an example, the identity morphisms of a category are the components
of a natural transformation, and, interestingly, the identity axiom of the
category is the naturality of the transformation.

Example 5.1.1. Given a category 𝒞, the identity natural transformation
id ∶ I → I ∶ 𝒞 → 𝒞 assigns to each object 𝑎 the identity morphism id𝑎 ∶ 𝑎 → 𝑎.
This is a natural transformation from and into the identity endofunctor (see
Example 4.1.2). Naturality is the commutativity of the diagram in Figure
5.3a, which holds by (2.2). More explicitly, naturality corresponds to the
commutativity of the diagram in Figure 5.3b, which includes the identity
endofunctor.

𝑎

𝑏

𝑎

𝑏

𝑓 𝑓

id𝑎

id𝑏

(a)

IO(𝑎)

IO(𝑏)

IO(𝑎)

IO(𝑏)

IM(𝑓) IM(𝑓)

id𝑎

id𝑏

(b)

Figure 5.3: Naturality of the identity natural transformation.

As an example of natural transformations as morphisms of functors, the
identity and power set functors are related in a natural manner.

52 5. Natural Transformations

Example 5.1.2. In Set, 𝜂 ∶ I → P ∶ Set → Set is a natural transformation
which assigns to each set 𝐴 a function 𝜂𝐴 ∶ IO(𝐴) → PO(𝐴) such that, for
all 𝑥 ∈ 𝐴,

𝜂𝐴(𝑥) = {𝑥}. (5.2)

This is a natural transformation from the identity functor into the power
set functor (see Examples 4.1.2 and 4.1.1, respectively). Naturality is the
commutativity of the diagram in Figure 5.4, which we shall prove as follows.
For a function 𝑓 ∶ 𝐴 → 𝐵 and an element 𝑥 ∈ 𝐴:

(𝜂𝐵 ∘ IM(𝑓))(𝑥)
= (by (2.4) with 𝑓 = IM(𝑓) and 𝑔 = 𝜂𝐵)

𝜂𝐵(IM(𝑓)(𝑥))
= (by (4.6))

𝜂𝐵(𝑓(𝑥))
= (by (5.2) with 𝐴 = 𝐵 and 𝑥 = 𝑓(𝑥))

{𝑓(𝑥)}
= (by (4.4) with 𝑋 = {𝑥})

PM(𝑓)({𝑥})
= (by (5.2))

PM(𝑓)(𝜂𝐴(𝑥))
= (by (2.4) with 𝑓 = 𝜂𝐴 and 𝑔 = PM(𝑓))

(PM(𝑓) ∘ 𝜂𝐴)(𝑥)

IO(𝐴)

IO(𝐵)

PO(𝐴)

PO(𝐵)

IM(𝑓) PM(𝑓)

𝜂𝐴

𝜂𝐵

Figure 5.4: Naturality of the 𝜂 natural transformation.

5.2. Natural Transformations in Haskell 53

5.2 Natural Transformations in Haskell
Polymorphic functions in functional programming correspond to natural
transformations. The kind of polymorphism we refer to is parametric poly-
morphism. A parametrically polymorphic or generic function is a function
whose “parameters can have more than one type.” Such a function “works
uniformly on a range of types,” which is “achieved by type parameters”
(Cardelli and Wegner 1985, p. 476).

In Haskell, polymorphic functions can be thought of as functions between
functors in order to relate them to natural transformations. Given two
functors with type constructors f and g, a natural transformation tau is
a polymorphic function tau :: f a -> g a or, using the ExplicitForAll
language option, a family of functions indexed by Haskell types:

tau :: forall a. f a -> g a

More precisely, each tau function is a component of a natural transformation.
The naturality of tau is the commutativity of the diagram in Figure 5.5, that
is, for all functions f :: a -> b:

tau . fmap f = fmap f . tau

An intuitive idea behind naturality is that “terms evaluated in related en-
vironments yield related values” (Wadler 1989, p. 347).

f a

f b

g a

g b

fmap f fmap f

tau

tau

Figure 5.5: Naturality in Haskell.

Naturality in Haskell is the “theorem for free” of (Wadler 1989), which
is also known as parametricity due to its relation with parametric polymor-
phism. Given the type of a polymorphic function, it is possible to conclude
that it satisfies its naturality. However, it is important to note that even

54 5. Natural Transformations

though parametricity guarantees that a polymorphic function satisfies its
naturality, it does not provide a proof of it. Parametricity does not re-
quire the definition of a polymorphic function (only its type), but proving
naturality does.

As examples, we consider the identity natural transformation, the head
and last functions, which show that proofs of naturality differ according
to the definition, and the concat function, which is one of the examples of
theorems from types in (Wadler 1989, p. 349).

Example 5.2.1. The identity function of Haskell is a natural transforma-
tion. Naturality is the identity axiom. See Example 5.1.1, which establishes
that the identity morphisms are the components of a natural transformation
regardless of which category it belongs to.

Example 5.2.2. We have already talked about the head function, which is
a natural transformation from the [] (list) functor into the Maybe functor.
Naturality is the commutativity of the diagram in Figure 5.1. Here is its
proof.

Case []:

(head . fmap f) []

= (by definition of (.))
head (fmap f [])

= (by definition of fmap)
head []

= (by definition of head)
Nothing

= (by definition of fmap)
fmap f Nothing

= (by definition of head)
fmap f (head [])

= (by definition of (.))
(fmap f . head) []

Case (x:xs):

(head . fmap f) (x:xs)

5.2. Natural Transformations in Haskell 55

= (by definition of (.))
head (fmap f (x:xs))

= (by definition of fmap)
head (f x : fmap f xs)

= (by definition of head)
Just (f x)

= (by definition of fmap)
fmap f (Just x)

= (by definition of head)
fmap f (head (x:xs))

= (by definition of (.))
(fmap f . head) (x:xs)

Example 5.2.3. Another natural transformation from the [] (list) functor
into the Maybe functor is the last function, which extracts the last element
of a list2:

last :: [a] -> Maybe a
last [] = Nothing
last (x:[]) = Just x
last (_:xs) = last xs

Its naturality is the commutativity of the diagram in Figure 5.6, that is, for
all functions f :: a -> b:

last . fmap f = fmap f . last

Intuitively, this means that mapping a function over a list and then extract-
ing the last element of the list is equivalent to extracting the last element
of the list and then applying the function. In this case, proving naturality
requires induction, as follows.

Case []:

(last . fmap f) []

2Note that this is not the standard Haskell last function.

56 5. Natural Transformations

[a]

[b]

Maybe a

Maybe b

fmap f fmap f

last

last

Figure 5.6: Naturality of the last function.

= (by definition of (.))
last (fmap f [])

= (by definition of fmap)
last []

= (by definition of last)
Nothing

= (by definition of fmap)
fmap f Nothing

= (by definition of last)
fmap f (last [])

= (by definition of (.))
(fmap f . last) []

Case [x]:

(last . fmap f) (x:[])

= (by definition of (.))
last (fmap f (x:[]))

= (by definition of fmap)
last (f x : fmap f [])

= (by definition of fmap)
last (f x : [])

= (by definition of last)

5.2. Natural Transformations in Haskell 57

Just (f x)

= (by definition of fmap)
fmap f (Just x)

= (by definition of last)
fmap f (last (x:[]))

= (by definition of (.))
(fmap f . last) (x:[])

Case (x:y:ys):

(last . fmap f) (x:y:ys)

= (by definition of (.))
last (fmap f (x:y:ys))

= (by definition of fmap)
last (f x : fmap f (y:ys))

= (by definition of last)
last (fmap f (y:ys))

= (by definition of (.))
(last . fmap f) (y:ys)

= (by inductive hypothesis)
(fmap f . last) (y:ys)

= (by definition of (.))
fmap f (last (y:ys))

= (by definition of last)
fmap f (last (x:y:ys))

= (by definition of (.))
(fmap f . last) (x:y:ys)

Example 5.2.4. We can think of the concat function, which concatenates
a list of lists, as a natural transformation from the [] . [] functor and into
the [] functor. The type signature of this function is:

concat :: [[a]] -> [a]

58 5. Natural Transformations

In this case, naturality is given by, for all functions f :: a -> b:

fmap f . concat = concat . fmap (fmap f)

That is, the diagram in Figure 5.7 is commutative, which holds by para-
metricity.

[[a]]

[[b]]

[a]

[b]

fmap (fmap f) fmap f

concat

concat

Figure 5.7: Naturality of the concat function.

5.3 References
The definition of a natural transformation is based on (Mac Lane 1998,
p. 16; Poigné 1992, pp. 435–436), the 𝜂 natural transformation is taken
from (Marquis 2013, p. 11), and the statement that polymorphic functions
in functional programming correspond to natural transformations is based
on, for instance, (Bird and de Moor 1997, p. 34; Elkins 2009, p. 78; Poigné
1992, pp. 435, 436; Rydeheard 1986b, pp. 48, 49; Rydeheard and Burstall
1988, p. 113; Wadler 1989, p. 350).

Chapter 6

Monads and Kleisli Triples

La Monade, dont nous parlerons icy, n’est
autre chose qu’une substance simple...

—Leibniz (1714, par. 1)

In Haskell, given two types a and b, the Cartesian product of a list xs
of elements of type a and a list ys of elements of type b is defined to be the
list of tuples (x,y) of type (a,b) for which x belongs to xs and y belongs to
ys, that is, using a list comprehension:

cartesian :: [a] -> [b] -> [(a,b)]
cartesian xs ys = [(x,y) | x <- xs, y <- ys]

Or, equivalently, desugaring the list comprehension:

cartesian xs ys = xs >>= \x -> ys >>= \y -> return (x,y)

This is but one simple example to show that “a monad is often an obvious
and useful tool to help solve a problem” (O’Sullivan, Goerzen, and Stew-
art 2008, p. 325), and that “many common programming patterns have a
monadic structure” (O’Sullivan, Goerzen, and Stewart 2008, p. 328).

In this chapter, we explore monads and Kleisli triples in order to be able
to conceptualize and better understand monads in functional programming.
As motivation, in Hask, “we distinguish the object a of values (of type a)
from the object m a of computations (of type a) (...). In particular, we iden-
tify the type a with the object of values (of type a) and obtain the object

59

60 6. Monads and Kleisli Triples

of computations (of type a) by applying a unary type constructor m to a.
We call m a notion of computation,” which is just a qualitative description
of a computation (Moggi 1989, p. 17), “since it abstracts away from the
type of values computations may produce” (Moggi 1991, pp. 57–58). There
are many notions of computation. For instance, the Maybe and [] (list) type
constructors represent the notions of partiality and nondeterminism, respec-
tively. Instead of studying a specific m, we focus on monads, which describe
the general properties common to such notions of computation (Moggi 1991,
p. 58).

In the remainder of this chapter, we define the concepts of monad and
Kleisli triple, prove their equivalence, and study both constructs in Haskell
and Agda. We should note that, terminologically, category-theoretical mon-
ads and monads in Haskell, which actually correspond to Kleisli triples, are
not the same thing.

6.1 Monads and Kleisli Triples
In this section, we define the concepts of monad and Kleisli triple, and prove
their equivalence. Kleisli triples “are easy to justify from a computational
perspective,” but monads “are more widely used in (...) category theory and
have the advantage of being defined only in terms of functors and natural
transformations, which make them more suitable for abstract manipulation”
(Moggi 1991, p. 60).

6.1.1 Monads
First, we describe monads. Despite the fact that monads in functional pro-
gramming correspond to Kleisli triples, categorical monads are likely more
appropriate for analyzing them from the perspective of category theory.
Definition 6.1. Let 𝒞 be a category. A monad T = (T, 𝜂, 𝜇) in 𝒞 consists
of an endofunctor T ∶ 𝒞 → 𝒞, together with two natural transformations

𝜂 ∶ I → T ∶ 𝒞 → 𝒞 (6.1)

and

𝜇 ∶ T ∘ T → T ∶ 𝒞 → 𝒞, (6.2)

called unit and multiplication of the monad, respectively, such that, for all
objects 𝑎,

𝜇𝑎 ∘ 𝜇TO(𝑎) = 𝜇𝑎 ∘ TM(𝜇𝑎), (6.3)

6.1. Monads and Kleisli Triples 61

𝜇𝑎 ∘ 𝜂TO(𝑎) = idTO(𝑎) , (6.4)

and

𝜇𝑎 ∘ TM(𝜂𝑎) = idTO(𝑎) , (6.5)

that is, the diagrams in Figures 6.1 and 6.21 are commutative. Since 𝜂 and
𝜇 are natural transformations, then, for all morphisms 𝑓 ∶ 𝑎 → TO(𝑏),

𝜂TO(𝑏) ∘ 𝑓 = TM(𝑓) ∘ 𝜂𝑎 (6.6)

and

𝜇TO(𝑏) ∘ TM(TM(𝑓)) = TM(𝑓) ∘ 𝜇𝑎, (6.7)

that is, the diagrams in Figures 6.3 and 6.4 are commutative.

TO(TO(TO(𝑎))) TO(TO(𝑎))

TO(TO(𝑎)) TO(𝑎)

TM(𝜇𝑎)

𝜇TO(𝑎) 𝜇𝑎

𝜇𝑎

Figure 6.1: Monadic associativity.

Remark 6.1. Formally, the definition of a monad is like that of a monoid
as described in Example 2.1.4. Let T = (T, 𝜂, 𝜇) be a monad in a category
𝒞. The endofunctor T is the set of elements of a monoid 𝑀 = (T, 𝜇, 𝜂). The
multiplication natural transformation, 𝜇, is the associative binary operation
of the monoid, and it has an identity, the unit natural transformation, 𝜂.
Thus, the diagram in Figure 6.1 is the associative law for the monad, while
the diagram in Figure 6.2 expresses the left and right unit laws (Mac Lane
1998, p. 138).

1We use double arrows in commutative diagrams to represent equality of objects.

62 6. Monads and Kleisli Triples

IO(TO(𝑎)) TO(TO(𝑎)) TO(IO(𝑎))

TO(𝑎) TO(𝑎) TO(𝑎)

𝜂TO(𝑎) TM(𝜂𝑎)

𝜇𝑎

idTO(𝑎) idTO(𝑎)

Figure 6.2: Monadic unity.

𝑎

TO(𝑏)

TO(𝑎)

TO(TO(𝑏))

𝑓 TM(𝑓)

𝜂𝑎

𝜂TO(𝑏)

Figure 6.3: Naturality of the 𝜂 natural transformation.

6.1. Monads and Kleisli Triples 63

TO(TO(𝑎))

TO(TO(TO(𝑏)))

TO(𝑎)

TO(TO(𝑏))

TM(TM(𝑓)) TM(𝑓)

𝜇𝑎

𝜇TO(𝑏)

Figure 6.4: Naturality of the 𝜇 natural transformation.

As examples of monads, we consider the identity monad, which is just a
reformulation of the identity functor for a given category.
Example 6.1.1. Let 𝒞 be a category. The identity or trivial monad of 𝒞 is
I = (I, id, id), that is, the identity endofunctor (see Example 4.1.2) and the
identity mapping of 𝒞. Equations (6.3), (6.4), and (6.5) hold by (2.2), and
(6.6) and (6.7) hold because id is a natural transformation (see Example
5.1.1).

6.1.2 Kleisli Triples
Now, we describe Kleisli triples, which “are just an alternative description
for monads” (Moggi 1991, p. 60).
Definition 6.2. Let 𝒞 be a category. A Kleisli triple T = (TO, 𝜂, ∗) in 𝒞,
where 𝜂 is a transformation (6.1), assigns to each object 𝑎 an object TO(𝑎),
and to each morphism 𝑓 ∶ 𝑎 → TO(𝑏) a morphism 𝑓∗ ∶ TO(𝑎) → TO(𝑏), such
that, for all morphisms 𝑓 ∶ 𝑎 → TO(𝑏) and 𝑔 ∶ 𝑏 → TO(𝑐),

𝑔∗ ∘ 𝑓∗ = (𝑔∗ ∘ 𝑓)∗, (6.8)

for all morphisms 𝑓 ∶ 𝑎 → TO(𝑏),
𝑓∗ ∘ 𝜂𝑎 = 𝑓 , (6.9)

and, for all objects 𝑎,

𝜂∗
𝑎 = idTO(𝑎) , (6.10)

that is, the diagrams in Figures 6.5a and 6.5b are commutative, and (6.10).

64 6. Monads and Kleisli Triples

TO(𝑎) TO(𝑏)

TO(𝑐)

𝑓∗

(𝑔∗ ∘ 𝑓)∗ 𝑔∗

(a) Kleisli triple associativity.

𝑎 TO(𝑎)

TO(𝑏)

𝜂𝑎

𝑓 𝑓∗

(b) Kleisli triple unity.

Figure 6.5: Kleisli triple laws.

Remark 6.2. From a computational perspective, “𝜂𝑎 is the inclusion of
values into computations and 𝑓∗ is the extension of a function 𝑓 from values
to computations to a function from computations to computations, which
first evaluates a computation and then applies 𝑓 to the resulting value”
(Moggi 1991, p. 59).

Remark 6.3. Unlike the definition of a monad, a Kleisli triple does not
require an endofunctor, just an object mapping, and its unit is not required
to be defined as a natural transformation, just a transformation.

As examples, we describe the identity or trivial monad as a Kleisli triple.

Example 6.1.2. Let 𝒞 be a category. The identity or trivial Kleisli triple of
𝒞 is I = (IO, id, IM), that is, the object mapping of the identity endofunctor
(see Example 4.1.2), the identity mapping, and the morphism mapping of
the identity endofunctor of 𝒞. Equation (6.8) holds by (2.1), and (6.9) and
(6.10) hold by (2.2). This is just an alternative description of the identity
monad (see Example 6.1.1).

6.1.3 Equivalence of Monads and Kleisli Triples

Algebraic theories in clone form (Manes 1976, p. 24), which we shall refer
to as monads in clone form, are yet another alternative description for mon-
ads. Manes (1976, pp. 26–29) thoroughly proved the equivalence between
monads and monads in clone form, and Moggi (1991, p. 61) stated the equiv-
alence between monads and Kleisli triples, and proved it without going into
details. The following theorems demonstrate in a thorough manner that
monads and Kleisli triples are equivalent. As illustrated in Figure 6.6, these

6.1. Monads and Kleisli Triples 65

proofs are enough for stating the equivalence between the three alternative
descriptions.

Monad

Monad in clone form Kleisli triple

Figure 6.6: Equivalence of monads, monads in clone form, and Kleisli triples.

First, we state that a Kleisli triple can be obtained from a monad. Since
monads are defined in terms of functors and natural transformations, the
following lemma is simpler than its converse.

Lemma 6.1. Let T = (T, 𝜂, 𝜇) be a monad in a category 𝒞. Then

T = (TO, 𝜂, ∗),

where TO is the object mapping of the endofunctor T, 𝜂 is the underly-
ing transformation of the natural transformation 𝜂, and ∗ assigns to each
morphism 𝑓 ∶ 𝑎 → TO(𝑏) a morphism 𝑓∗ ∶ TO(𝑎) → TO(𝑏) defined by

𝑓∗ = 𝜇𝑏 ∘ TM(𝑓), (6.11)

is a Kleisli triple in 𝒞.

Proof. First, we prove that (6.8) holds:

𝑔∗ ∘ 𝑓∗

= (by (6.11) with 𝑓 = 𝑓 and 𝑓 = 𝑔)
𝜇𝑐 ∘ TM(𝑔) ∘ 𝜇𝑏 ∘ TM(𝑓)

= (by (6.7) with 𝑓 = 𝑔)
𝜇𝑐 ∘ 𝜇TO(𝑐) ∘ TM(TM(𝑔)) ∘ TM(𝑓)

= (by (4.2) with 𝑔 = TM(𝑔))
𝜇𝑐 ∘ 𝜇TO(𝑐) ∘ TM(TM(𝑔) ∘ 𝑓)

= (by (6.3) with 𝑎 = 𝑐)
𝜇𝑐 ∘ TM(𝜇𝑐) ∘ TM(TM(𝑔) ∘ 𝑓)

= (by (4.2) with 𝑓 = TM(𝑔) ∘ 𝑓 and 𝑔 = 𝜇𝑐)

66 6. Monads and Kleisli Triples

𝜇𝑐 ∘ TM(𝜇𝑐 ∘ TM(𝑔) ∘ 𝑓)
= (by (6.11) with 𝑓 = 𝑔 and 𝑓 = 𝑔∗ ∘ 𝑓)

(𝑔∗ ∘ 𝑓)∗

Now, we prove that (6.9) holds:

𝑓∗ ∘ 𝜂𝑎

= (by (6.11))
𝜇𝑏 ∘ TM(𝑓) ∘ 𝜂𝑎

= (by (6.6))
𝜇𝑏 ∘ 𝜂TO(𝑏) ∘ 𝑓

= (by (6.4) with 𝑎 = 𝑏)
idTO(𝑏) ∘ 𝑓

= (by (2.2))
𝑓

Finally, we prove that (6.10) holds:

𝜂∗
𝑎

= (by (6.11) with 𝑓 = 𝜂𝑎)
𝜇𝑎 ∘ TM(𝜂𝑎)

= (by (6.5))
idTO(𝑎)

The object mapping of a Kleisli triple can be extended to define an
endofunctor, as proven in the following lemma.

Lemma 6.2. Let 𝒞 be a category. If T = (TO, 𝜂, ∗) is a Kleisli triple in 𝒞,
then T = (TO, TM), which assigns to each morphism 𝑓 ∶ 𝑎 → 𝑏 a morphism
TM(𝑓) ∶ TO(𝑎) → TO(𝑏) defined by

TM(𝑓) = (𝜂𝑏 ∘ 𝑓)∗, (6.12)

is an endofunctor in 𝒞.

Proof. In the first place, we prove that (4.1) holds:

6.1. Monads and Kleisli Triples 67

TM(id𝑎)
= (by (6.12) with 𝑓 = id𝑎)

(𝜂𝑎 ∘ id𝑎)∗

= (by (2.2) with 𝑓 = 𝜂𝑎)
𝜂∗

𝑎

In the second place, we prove that (4.2) holds:

TM(𝑔 ∘ 𝑓)
= (by (6.12) with 𝑓 = 𝑔 ∘ 𝑓)

(𝜂𝑐 ∘ 𝑔 ∘ 𝑓)∗

= (by (6.9) with 𝑓 = 𝜂𝑐 ∘ 𝑔)
((𝜂𝑐 ∘ 𝑔)∗ ∘ 𝜂𝑏 ∘ 𝑓)∗

= (by (6.8) with 𝑓 = 𝜂𝑏 ∘ 𝑓 and 𝑔 = 𝜂𝑐 ∘ 𝑔)
(𝜂𝑐 ∘ 𝑔)∗ ∘ (𝜂𝑏 ∘ 𝑓)∗

= (by (6.12) with 𝑓 = 𝑓 and 𝑓 = 𝑔)
TM(𝑔) ∘ TM(𝑓)

Now, since T is an endofunctor, we state and prove that 𝜂 is a natural
transformation.

Lemma 6.3. If T = (TO, 𝜂, ∗) is a Kleisli triple in a category 𝒞, then the
transformation 𝜂 is natural.

Proof. We prove that (5.1) holds for 𝜂:

𝜂TO(𝑏) ∘ 𝑓
= (by (6.9) with 𝑓 = 𝜂TO(𝑏) ∘ 𝑓)

(𝜂TO(𝑏) ∘ 𝑓)∗ ∘ 𝜂𝑎
= (by (6.12))

TM(𝑓) ∘ 𝜂𝑎

Next, we define the multiplication of a monad given a Kleisli triple, and
prove that it is a natural transformation.

68 6. Monads and Kleisli Triples

Lemma 6.4. Let 𝒞 be a category. If T = (TO, 𝜂, ∗) is a Kleisli triple
in 𝒞, then a transformation 𝜇 which assigns to each object 𝑎 a morphism
𝜇𝑎 ∶ TO(TO(𝑎)) → TO(𝑎) defined by

𝜇𝑎 = id∗
TO(𝑎) (6.13)

is a natural transformation 𝜇 ∶ T ∘ T → T ∶ 𝒞 → 𝒞.

Proof. We prove that (5.1) holds for 𝜇:

𝜇TO(𝑏) ∘ TM(TM(𝑓))
= (by (6.13) with 𝑎 = TO(𝑏))

id∗
TO(TO(𝑏)) ∘ TM(TM(𝑓))
= (by (6.12))

id∗
TO(TO(𝑏)) ∘ TM((𝜂TO(𝑏) ∘ 𝑓)∗)
= (by (6.12) with 𝑓 = (𝜂TO(𝑏) ∘ 𝑓)∗)

id∗
TO(TO(𝑏)) ∘ (𝜂TO(TO(𝑏)) ∘ (𝜂TO(𝑏) ∘ 𝑓)∗)∗

= (by (6.8) with 𝑓 = 𝜂TO(TO(𝑏)) ∘ (𝜂TO(𝑏) ∘ 𝑓)∗ and 𝑔 = idTO(TO(𝑏)))

(id∗
TO(TO(𝑏)) ∘ 𝜂TO(TO(𝑏)) ∘ (𝜂TO(𝑏) ∘ 𝑓)∗)∗

= (by (6.9) with 𝑓 = idTO(TO(𝑏)))
(idTO(TO(𝑏)) ∘ (𝜂TO(𝑏) ∘ 𝑓)∗)∗

= (by (2.2) with 𝑓 = (𝜂TO(𝑏) ∘ 𝑓)∗)
((𝜂TO(𝑏) ∘ 𝑓)∗)∗

= (by (2.2) with 𝑓 = (𝜂TO(𝑏) ∘ 𝑓)∗)
((𝜂TO(𝑏) ∘ 𝑓)∗ ∘ idTO(𝑎))∗

= (by (6.8) with 𝑓 = idTO(𝑎) and 𝑔 = 𝜂TO(𝑏) ∘ 𝑓)

(𝜂TO(𝑏) ∘ 𝑓)∗ ∘ id∗
TO(𝑎)

= (by (6.12))
TM(𝑓) ∘ id∗

TO(𝑎)

= (by (6.13))
TM(𝑓) ∘ 𝜇𝑎

6.1. Monads and Kleisli Triples 69

Now, we state that a monad can be obtained from a Kleisli triple using
the constructions from the three lemmas above.

Lemma 6.5. Let T = (TO, 𝜂, ∗) be a Kleisli triple in a category 𝒞. Then

T = (T, 𝜂, 𝜇),

where T is the endofunctor in 𝒞 defined by Lemma 6.2, 𝜂 is the trans-
formation 𝜂 regarded as a natural transformation (see Lemma 6.3), and
𝜇 ∶ T ∘ T → T ∶ 𝒞 → 𝒞 is the natural transformation defined by Lemma 6.4,
is a monad in 𝒞.

Proof. First, we prove that (6.3) holds:

𝜇𝑎 ∘ 𝜇TO(𝑎)
= (by (6.13) with 𝑎 = 𝑎 and 𝑎 = TO(𝑎))

id∗
TO(𝑎) ∘ id∗

TO(TO(𝑎))
= (by (6.8) with 𝑓 = idTO(TO(𝑎)) and 𝑔 = idTO(𝑎))

(id∗
TO(𝑎) ∘ idTO(TO(𝑎)))∗

= (by (2.2) with 𝑓 = id∗
TO(𝑎))

(id∗
TO(𝑎))∗

= (by (2.2) with 𝑓 = id∗
TO(𝑎))

(idTO(𝑎) ∘ id∗
TO(𝑎))∗

= (by (6.9) with 𝑓 = idTO(𝑎))
(id∗

TO(𝑎) ∘ 𝜂TO(𝑎) ∘ id∗
TO(𝑎))∗

= (by (6.8) with 𝑓 = 𝜂TO(𝑎) ∘ id∗
TO(𝑎) and 𝑔 = idTO(𝑎))

id∗
TO(𝑎) ∘ (𝜂TO(𝑎) ∘ id∗

TO(𝑎))∗

= (by (6.13))
𝜇𝑎 ∘ (𝜂TO(𝑎) ∘ 𝜇𝑎)∗

= (by (6.12) with 𝑓 = 𝜇𝑎)
𝜇𝑎 ∘ TM(𝜇𝑎)

Now, we prove that (6.4) holds:

𝜇𝑎 ∘ 𝜂TO(𝑎)
= (by (6.13))

70 6. Monads and Kleisli Triples

id∗
TO(𝑎) ∘ 𝜂TO(𝑎)

= (by (6.9) with 𝑓 = idTO(𝑎))

idTO(𝑎)

Finally, we prove that (6.5) holds:

𝜇𝑎 ∘ TM(𝜂𝑎)
= (by (6.13))

id∗
TO(𝑎) ∘ TM(𝜂𝑎)
= (by (6.12) with 𝑓 = 𝜂𝑎)

id∗
TO(𝑎) ∘ (𝜂TO(𝑎) ∘ 𝜂𝑎)∗

= (by (6.8) with 𝑓 = 𝜂TO(𝑎) ∘ 𝜂𝑎 and 𝑔 = idTO(𝑎))

(id∗
TO(𝑎) ∘ 𝜂TO(𝑎) ∘ 𝜂𝑎)∗

= (by (6.9) with 𝑓 = idTO(𝑎))

(idTO(𝑎) ∘ 𝜂𝑎)∗

= (by (2.2) with 𝑓 = 𝜂𝑎)

𝜂∗
𝑎

= (by (6.10))

idTO(𝑎)

Finally, in the following theorem, we prove that monads and Kleisli
triples are equivalent.

Theorem 6.6. Monads and Kleisli triples are coextensive.

Proof. The correspondence between monads and Kleisli triples is given by
Lemma 6.1, which proves that a Kleisli triple can be derived from a monad,
and Lemma 6.5, which proves that a monad can be derived from a Kleisli
triple.

6.2. Monads and Kleisli Triples in Haskell 71

6.2 Monads and Kleisli Triples in Haskell
When discussing monads, there are three possibilities: monads (in monoid
form), Kleisli triples (monads in extension form), and monads in clone form.
Kleisli triples are easier to justify from a computational point of view and
correspond to the representation that is found in functional programming
languages like Haskell and the Agda standard library. On the other hand,
monads have some mathematical advantages and are more intuitive in some
cases. In this section, we describe both representations in Haskell.

6.2.1 Monads in Haskell
In Hask, a monad consists of an endofunctor, together with two paramet-
rically polymorphic functions, as follows2:

class Functor m => Monad' m where
return :: a -> m a
join :: m (m a) -> m a

The endofunctor m corresponds to the endofunctor T of a monad, and the
return and join functions correspond to the unit and multiplication natural
transformations of a monad, 𝜂 and 𝜇, respectively. Equation (6.3), monadic
associativity, becomes the commutativity of the diagram in Figure 6.7:

join . join = join . fmap join

Equations (6.4) and (6.5), monadic unity, become the commutativity of the
diagram in Figure 6.8:

join . return = id = join . fmap return

In addition, by parametricity (see Section 5.2), the naturality of the
unit natural transformation, (6.6), becomes the free theorem for the return
function, that is, for all functions f :: a -> m b:

return . f = fmap f . return

2Note that this is not a standard Haskell type class.

72 6. Monads and Kleisli Triples

m (m (m a)) m (m a)

m (m a) m a

fmap join

join join

join

Figure 6.7: Monadic associativity in Hask.

m a m (m a) m a

m a

return fmap return

join
id id

Figure 6.8: Monadic unity in Hask.

Similarly, the naturality of the multiplication natural transformation, (6.7),
becomes the free theorem for the join function, that is:

join . fmap (fmap f) = fmap f . join

As examples, we consider the identity or trivial monad, which is an
intuitive way of learning to use the Monad' type class, and two of the most
common monads in Haskell, Maybe and [] (list).

Example 6.2.1. In Hask, the Identity or trivial monad, which uses the
identity endofunctor (see Example 4.2.1), is defined as follows3:

3Using the InstanceSigs language option.

6.2. Monads and Kleisli Triples in Haskell 73

instance Monad' Identity where
return :: a -> Identity a
return = Identity

join :: Identity (Identity a) -> Identity a
join (Identity mx) = mx

This instance satisfies the monad laws, as proved in Example 6.1.1.

Example 6.2.2. In Hask, the Maybe monad, which uses the Maybe endo-
functor (see Example 4.2.2), is defined as follows:

instance Monad' Maybe where
return :: a -> Maybe a
return = Just

join :: Maybe (Maybe a) -> Maybe a
join Nothing = Nothing
join (Just mx) = mx

Let us see that this instance satisfies the monad laws. First, we prove that
(6.3) holds:

Case Nothing:

(join . join) Nothing

= (by definition of (.))
join (join Nothing)

= (by definition of join)
join Nothing

= (by definition of fmap)
join (fmap join Nothing)

= (by definition of (.))
(join . fmap join) Nothing

Case (Just mmx):

(join . join) (Just mmx)

74 6. Monads and Kleisli Triples

= (by definition of (.))
join (join (Just mmx))

= (by definition of join)
join mmx

= (by definition of join)
join (Just (join mmx))

= (by definition of fmap)
join (fmap join (Just mmx))

= (by definition of (.))
(join . fmap join) (Just mmx)

Now, we prove that (6.4) holds:

(join . return) mx

= (by definition of (.))
join (return mx)

= (by definition of return)
join (Just mx)

= (by definition of join)
mx

= (by definition of id)
id mx

Finally, we prove that (6.5) holds:

Case Nothing:

(join . fmap return) Nothing

= (by definition of (.))
join (fmap return Nothing)

= (by definition of fmap)
join Nothing

= (by definition of join)
Nothing

6.2. Monads and Kleisli Triples in Haskell 75

= (by definition of id)
id Nothing

Case (Just x):

(join . fmap return) (Just x)

= (by definition of (.))
join (fmap return (Just x))

= (by definition of fmap)
join (Just (return x))

= (by definition of join)
return x

= (by definition of return)
Just x

= (by definition of id)
id (Just x)

Example 6.2.3. In Hask, the list monad, which uses the list endofunctor
(see Example 4.2.3), is declared as follows:

instance Monad' [] where
return :: a -> [a]
return x = [x]

join :: [[a]] -> [a]
join = concat

The concat function is defined as follows:

concat :: [[a]] -> [a]
concat [] = []
concat (xs:xss) = xs ++ concat xss

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : xs ++ ys

76 6. Monads and Kleisli Triples

Let us see that this instance satisfies the monad laws. In the first place, we
prove, by induction, that (6.3) holds:

Case []:

(join . join) []

= (by definitions of (.) and join)
concat (concat [])

= (by definition of concat)
concat []

= (by definition of fmap)
concat (fmap concat [])

= (by definitions of (.) and join)
(join . fmap join) []

Case (xss:xsss):

(join . join) (xss:xsss)

= (by definitions of (.) and join)
concat (concat (xss:xsss))

= (by definition of concat)
concat (xss ++ concat xsss)

= (see below)
concat xss ++ concat (concat xsss)

= (by inductive hypothesis)
concat xss ++ concat (fmap concat xsss)

= (by definition of concat)
concat (concat xss : fmap concat xsss)

= (by definition of fmap)
concat (fmap concat (xss:xsss))

= (by definitions of (.) and join)
(join . fmap join) (xss:xsss)

In this proof, we use the fact that concat distributes over (++):

6.2. Monads and Kleisli Triples in Haskell 77

concat (xss ++ yss) = concat xss ++ concat yss

We shall not prove this property, which could be done by induction on xss.
Now, we prove that (6.4) holds:

(join . return) xs

= (by definitions of (.) and join)
concat (return xs)

= (by definition of return)
concat [xs]

= (by definition of concat)
xs

= (by definition of id)
id xs

Finally, we prove, by induction, that (6.5) holds:

Case []:

(join . fmap return) []

= (by definitions of (.) and join)
concat (fmap return [])

= (by definition of fmap)
concat []

= (by definition of concat)
[]

= (by definition of id)
id []

Case (x:xs):

(join . fmap return) (x:xs)

= (by definitions of (.) and join)
concat (fmap return (x:xs))

= (by definition of fmap)

78 6. Monads and Kleisli Triples

concat (return x : fmap return xs)

= (by definition of concat)
return x ++ concat (fmap return xs)

= (by inductive hypothesis)
return x ++ id xs

= (by definitions of return and id)
[x] ++ xs

= (by definition of (++))
(x:xs)

= (by definition of id)
id (x:xs)

6.2.2 Kleisli Triples in Haskell
In Hask, a Kleisli triple consists of a type constructor, and two functions,
as follows4:

class Monad'' m where
return :: a -> m a
bind :: (a -> m b) -> m a -> m b

The type constructor m corresponds to the object mapping TO of a Kleisli
triple, and the return and bind functions correspond to the unit natural
transformation and the extension mapping of a Kleisli triple, 𝜂 and ∗, re-
spectively. Equation (6.8), Kleisli triple associativity, becomes the commu-
tativity of the diagram in Figure 6.9a:

bind g . bind f = bind (bind g . f)

Equation (6.9), Kleisli triple left-unity, is the commutativity of the diagram
in Figure 6.9b:

bind f . return = f

4Note that this is not the standard Haskell Monad type class.

6.2. Monads and Kleisli Triples in Haskell 79

And (6.10), Kleisli triple right-unity, becomes:

bind return = id

m a m b

m c

bind f

bind (bind g . f)
bind g

(a) Kleisli triple associativity.

a m a

m b

return

f
bind f

(b) Kleisli triple unity.

Figure 6.9: Kleisli triple laws in Hask.

Remark 6.4. Our Monad'' type class corresponds to the minimal declara-
tion of the standard Haskell Monad type class, which is not defined in terms
of bind:

class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

(>>) :: m a -> m b -> m b
m >> k = m >>= _ -> k

fail :: String -> m a
fail = error

Given a monad with a bind function, we can get (>>=) as follows:

(>>=) :: Monad'' m => m a -> (a -> m b) -> m b
mx >>= f = bind f mx

In terms of standard Haskell, the bind function is (<<=), which is the same
as (>>=), but with the arguments interchanged. Now, let us rewrite the
Monad'' laws using (>>=). In the first place, since

80 6. Monads and Kleisli Triples

(bind g . bind f) mx

= (by definition of (.))
bind g (bind f mx)

= (by definition of (>>=))
(bind f mx) >>= g

= (by definition of (>>=))
(mx >>= f) >>= g

and

bind (bind g . f) mx

= (by definition of (>>=))
mx >>= (bind g . f)

= (by definition of (.))
mx >>= (\x -> bind g (f x))

= (by definition of (>>=))
mx >>= (\x -> f x >>= g)

Kleisli triple associativity becomes

(mx >>= f) >>= g = mx >>= (\ x -> f x >>= g)

In the second place, since

(bind f . return) x

= (by definition of (.))
bind f (return x)

= (by definition of (>>=))
return x >>= f

Kleisli triple left-unity becomes

return x >>= f = f x

Finally, since

6.2. Monads and Kleisli Triples in Haskell 81

bind return mx

= (by definition of (>>=))
mx >>= return

Kleisli triple right-unity becomes

mx >>= return = mx

Even though our Monad'' type class corresponds just to Monad with return
and (>>=), it is worth mentioning the (>>) and fail functions, neither of
which are part of the mathematical definition of a Kleisli triple. In the first
place, “(>>) is a specialized version of (>>=)” (Yorgey 2009, p. 30). In the
second place, the fail function is a hack used by Haskell to enable failure in a
do expression, which is a special syntactic construct for Monad (Lipovača 2011,
p. 273; Peyton Jones 2003, p. 88; Yorgey 2009, p. 30). Besides, the error
function is closely related to undefined5, which we discussed in Convention 1.

As examples, we consider the Identity, Maybe, and [] monads as Kleisli
triples.

Example 6.2.4. In Hask, the Identity or trivial Kleisli triple is defined as
follows:

instance Monad'' Identity where
return :: a -> Identity a
return = Identity

bind :: (a -> Identity b) -> Identity a -> Identity b
bind f (Identity x) = f x

This instance satisfies the Kleisli triple laws, as proved in Example 6.1.2.

Example 6.2.5. In Hask, the Maybe Kleisli triple is defined as follows:

instance Monad'' Maybe where
return :: a -> Maybe a
return = Just

5See (Peyton Jones 2003, § 3.1).

82 6. Monads and Kleisli Triples

bind :: (a -> Maybe b) -> Maybe a -> Maybe b
bind _ Nothing = Nothing
bind f (Just x) = f x

Let us see that this instance satisfies the Kleisli triple laws. We prove that
(6.8) holds:

Case Nothing:

bind return Nothing

= (by definition of bind)
Nothing

= (by definition of id)
id Nothing

Case (Just x):

bind return (Just x)

= (by definition of return)
return x

= (by definition of return)
Just x

= (by definition of id)
id (Just x)

Now, we prove that (6.9) holds:

(bind f . return) x

= (by definition of (.))
bind f (return x)

= (by definition of return)
bind f (Just x)

= (by definition of bind)
f x

Finally, we prove that (6.10) holds:

Case Nothing:

6.2. Monads and Kleisli Triples in Haskell 83

(bind g . bind f) Nothing

= (by definition of (.))
bind g (bind f Nothing)

= (by definition of bind)
bind g Nothing

= (by definition of bind)
Nothing

= (by definition of bind)
bind (bind g . f) Nothing

Case (Just x):

(bind g . bind f) (Just x)

= (by definition of (.))
bind g (bind f (Just x))

= (by definition of bind)
bind g (f x)

= (by definition of (.))
(bind g . f) x

= (by definition of bind)
bind (bind g . f) (Just x)

Example 6.2.6. In Hask, the [] (list) Kleisli triple is declared as follows:

instance Monad'' [] where
return :: a -> [a]
return x = [x]

bind :: (a -> [b]) -> [a] -> [b]
bind f xs = concat (map f xs)

We shall not prove that this instance satisfies the Kleisli triple laws. Since
we have already proved that the list monad satisfies the monad laws (see
Example 6.2.3) and that both representations are coextensive, we know that
this instance does satisfy the Kleisli triple laws.

84 6. Monads and Kleisli Triples

6.2.3 Equivalence of Monads and Kleisli Triples in Haskell
We have already proved that monads and Kleisli triples are equivalent. In
this subsection, we shall see their correspondence in terms of Haskell. First,
let us see that a Monad'' (and a Monad) can be obtained from a Monad', which
we demonstrated in Lemma 6.1:

bind :: Monad' m => (a -> m b) -> m a -> m b
bind f mx = join (fmap f mx)

(>>=) :: Monad' m => m a -> (a -> m b) -> m b
mx >>= f = join (fmap f mx)

Second, let us see that a Monad' can be obtained from a Monad'' (and
from a Monad). The type constructor of a Monad'' can be extended to define
an endofunctor, which we showed in Lemma 6.2:

fmap :: Monad'' m => (a -> b) -> m a -> m b
fmap f mx = bind (return . f) mx

liftM :: Monad m => (a -> b) -> m a -> m b
liftM f mx = mx >>= (return . f)

This definition of fmap is just (6.12). Finally, the bind function of a Monad''
can be used to define the join function of a Monad', which corresponds to
Lemma 6.4 or (6.13):

join' :: Monad'' m => m (m a) -> m a
join' mmx = bind id mmx

join :: Monad m => m (m a) -> m a
join mmx = mmx >>= id

Remark 6.5. In (Kmett 2014), there is a definition of bindable functors
(that is, monads without return) which includes both bind and join. Thus,
yet another type class declaration for monads and Kleisli triples is:

class Functor m => Monad''' m where
return :: a -> m a

6.3. Monads and Kleisli Triples in Agda 85

bind :: (a -> m b) -> m a -> m b
bind f = join . fmap f

join :: m (m a) -> m a
join = bind id

6.3 Monads and Kleisli Triples in Agda
In this section, we describe monads and Kleisli triples in Agda. Since we
have already described both representations in category theory and Haskell,
we shall not go into a lot of detail here.

6.3.1 Monads in Agda
Monads in Agda are defined by the Monad' record, which can be found in
the module Abel.Category.Monad. This declaration includes the monad laws,
even naturalities, and the bind function, which corresponds to the fact that
a Kleisli triple can be obtained from a monad.

record Monad' {M : Set → Set} (functor : Functor M) : Set₁ where

constructor mkMonad'

open Functor functor using (fmap)

field

return : {A : Set} → A → M A

join : {A : Set} → M (M A) → M A

associativity : {A : Set} (mmmx : M (M (M A))) →
join (join mmmx) ≡ join (fmap join mmmx)

unity-left : {A : Set} (mx : M A) → join (return mx) ≡ mx

unity-right : {A : Set} (mx : M A) → join (fmap return mx) ≡ mx

86 6. Monads and Kleisli Triples

naturality-return : {A B : Set} {f : A → M B} (x : A) →
return (f x) ≡ fmap f (return x)

naturality-join : {A B : Set} {f : A → M B} (mmx : M (M A)) →
join (fmap (fmap f) mmx) ≡ fmap f (join mmx)

bind : {A B : Set} → (A → M B) → M A → M B
bind f = join ∘ fmap f

As examples, we consider all the monads from Section 6.2, that is, the
Identity, Maybe, and List monads.

Example 6.3.1 (See module Abel.Data.Identity.Monad). In Agda, the Iden-
tity or trivial monad, which is an instance of the identity monad (see Ex-
ample 6.1.1), is defined as follows:

monad' : Monad' functor
monad' = mkMonad' return join associativity unity-left unity-right

naturality-return naturality-join
where
return : {A : Set} → A → Identity A
return = identity

join : {A : Set} → Identity (Identity A) → Identity A
join (identity x) = x

open Functor functor using (fmap)

associativity : {A : Set}
(x : Identity (Identity (Identity A))) →
join (join x) ≡ join (fmap join x)

associativity (identity _) = refl

unity-left : {A : Set} (x : Identity A) → join (return x) ≡ x
unity-left _ = refl

unity-right : {A : Set} (x : Identity A) →
join (fmap return x) ≡ x

unity-right (identity _) = refl

6.3. Monads and Kleisli Triples in Agda 87

naturality-return : {A B : Set} {f : A → Identity B} (x : A) →
return (f x) ≡ fmap f (return x)

naturality-return _ = refl

naturality-join : {A B : Set} {f : A → Identity B}
(x : Identity (Identity A)) →
join (fmap (fmap f) x) ≡ fmap f (join x)

naturality-join (identity _) = refl

Example 6.3.2 (See module Abel.Data.Maybe.Monad). In Agda, the Maybe
monad, which corresponds to the Maybe monad in Hask (see Example 6.2.2),
is defined as follows:

monad' : Monad' functor
monad' = mkMonad' return join associativity unity-left unity-right

naturality-return naturality-join
where
return : {A : Set} → A → Maybe A
return = just

join : {A : Set} → Maybe (Maybe A) → Maybe A
join (just mx) = mx
join nothing = nothing

open Functor functor

associativity : {A : Set} (mmmx : Maybe (Maybe (Maybe A))) →
join (join mmmx) ≡ join (fmap join mmmx)

associativity (just _) = refl
associativity nothing = refl

unity-left : {A : Set} (mx : Maybe A) → join (return mx) ≡ mx
unity-left _ = refl

unity-right : {A : Set} (mx : Maybe A) →
join (fmap return mx) ≡ mx

unity-right (just _) = refl
unity-right nothing = refl

naturality-return : {A B : Set} {f : A → Maybe B} (x : A) →

88 6. Monads and Kleisli Triples

return (f x) ≡ fmap f (return x)
naturality-return _ = refl

naturality-join : {A B : Set} {f : A → Maybe B}
(mmx : Maybe (Maybe A)) →
join (fmap (fmap f) mmx) ≡ fmap f (join mmx)

naturality-join (just _) = refl
naturality-join nothing = refl

Example 6.3.3 (See module Abel.Data.List.Monad). In Agda, the List
monad, which corresponds to the list monad in Hask (see Example 6.2.3),
is defined as follows:

monad' : Monad' functor
monad' = mkMonad' return join associativity unity-left unity-right

naturality-return naturality-join
where
return : {A : Set} → A → List A
return x = x ∷ []

join : {A : Set} → List (List A) → List A
join = concat

open Functor functor using (fmap)

associativity : {A : Set} (xsss : List (List (List A))) →
join (join xsss) ≡ join (fmap join xsss)

associativity [] = refl
associativity ([] ∷ xsss) = associativity xsss
associativity (([] ∷ xss) ∷ xsss) =

associativity (xss ∷ xsss)
associativity (((x ∷ xs) ∷ xss) ∷ xsss) =

cong (_∷_ x) (associativity ((xs ∷ xss) ∷ xsss))

unity-left : {A : Set} (xs : List A) → join (return xs) ≡ xs
unity-left [] = refl
unity-left (x ∷ xs) = cong (_∷_ x) (unity-left xs)

unity-right : {A : Set} (xs : List A) →
join (fmap return xs) ≡ xs

6.3. Monads and Kleisli Triples in Agda 89

unity-right [] = refl
unity-right (x ∷ xs) = cong (_∷_ x) (unity-right xs)

naturality-return : {A B : Set} {f : A → List B} (x : A) →
return (f x) ≡ fmap f (return x)

naturality-return _ = refl

naturality-join : {A B : Set} {f : A → List B}
(xss : List (List A)) →
join (fmap (fmap f) xss) ≡ fmap f (join xss)

naturality-join [] = refl
naturality-join ([] ∷ xss) = naturality-join xss
naturality-join {f = f} ((x ∷ xs) ∷ xss) =

cong (_∷_ (f x)) (naturality-join (xs ∷ xss))

6.3.2 Kleisli Triples in Agda

Kleisli triples in Agda are defined by the Monad'' record, which can be found
in the module Abel.Category.Monad. The following definition corresponds to
the Monad type class declaration in Haskell. As usual, this definition includes
the appropriate associativity and unity laws, and naturalities, which means
that any instance of the Monad type class is a Kleisli triple.

record Monad'' (M : Set → Set) : Set₁ where

constructor mkMonad''

field

return : {A : Set} → A → M A

bind : {A B : Set} → (A → M B) → M A → M B

associativity : {A B C : Set} {f : A → M B} {g : B → M C}
(mx : M A) →
bind g (bind f mx) ≡ bind (bind g ∘ f) mx

unity-left : {A B : Set} {f : A → M B} (x : A) →
bind f (return x) ≡ f x

90 6. Monads and Kleisli Triples

unity-right : {A : Set} (mx : M A) → bind return mx ≡ mx

infixr 1 _=<<_

=<< : {A B : Set} → (A → M B) → M A → M B
=<< = bind

infixl 1 _>>=_ _>>_

>>= : {A B : Set} → M A → (A → M B) → M B
mx >>= f = bind f mx

>> : {A B : Set} → M A → M B → M B
mx >> my = mx >>= λ _ → my

fmap : {A B : Set} → (A → B) → M A → M B
fmap f = bind (return ∘ f)

join : ∀ {A} → M (M A) → M A
join = bind id

As with Kleisli triples in Hask, we use the bind function instead of the
>>= operator because the former is easier to use for abstract manipulation.
However, the latter is included in the definition, as well as the _=<<_ operator,
which corresponds exactly to the bind function. Additionally, this record
includes the fmap and join functions, which correspond to the fact that a
monad can be obtained from a Kleisli triple.

As examples, we consider the Identity, Maybe, and List monads as Kleisli
triples.

Example 6.3.4 (See module Abel.Data.Identity.Monad). In Agda, the Iden-
tity or trivial Kleisli triple, which is an instance of the identity Kleisli triple
(see Example 6.1.2), and which corresponds to the identity Kleisli triple in
Hask (see Example 6.2.4), is defined as follows:

monad : Monad'' Identity
monad = mkMonad'' return bind associativity unity-left unity-right

where
return : {A : Set} → A → Identity A

6.3. Monads and Kleisli Triples in Agda 91

return = identity

bind : {A B : Set} → (A → Identity B) → Identity A → Identity B
bind f (identity x) = f x

associativity : {A B C : Set} {f : A → Identity B}
{g : B → Identity C} (x : Identity A) →
bind g (bind f x) ≡ bind (bind g ∘ f) x

associativity (identity _) = refl

unity-left : {A B : Set} {f : A → Identity B} (x : A) →
bind f (return x) ≡ f x

unity-left _ = refl

unity-right : {A : Set} (x : Identity A) → bind return x ≡ x
unity-right (identity _) = refl

Example 6.3.5 (See module Abel.Data.Maybe.Monad). In Agda, the Maybe
Kleisli triple, which corresponds to the Maybe Kleisli triple in Hask (see
Example 6.2.5), is defined as follows:

monad : Monad'' Maybe
monad = mkMonad'' return bind associativity unity-left unity-right

where
return : {A : Set} → A → Maybe A
return = just

bind : {A B : Set} → (A → Maybe B) → Maybe A → Maybe B
bind f (just x) = f x
bind _ nothing = nothing

associativity : {A B C : Set} {f : A → Maybe B} {g : B → Maybe C}
(mx : Maybe A) →
bind g (bind f mx) ≡ bind (bind g ∘ f) mx

associativity (just _) = refl
associativity nothing = refl

unity-left : {A B : Set} {f : A → Maybe B} (x : A) →
bind f (return x) ≡ f x

unity-left _ = refl

92 6. Monads and Kleisli Triples

unity-right : {A : Set} (mx : Maybe A) → bind return mx ≡ mx
unity-right (just _) = refl
unity-right nothing = refl

Example 6.3.6 (See module Abel.Data.List.Monad). In Agda, the List
Kleisli triple, which corresponds to the list Kleisli triple in Hask (see Ex-
ample 6.2.6), is defined as follows:

monad : Monad'' List
monad = mkMonad'' return bind associativity unity-left unity-right

where
return : {A : Set} → A → List A
return x = x ∷ []

bind : {A B : Set} → (A → List B) → List A → List B
bind f xs = concat (map f xs)

associativity : {A B C : Set} {f : A → List B} {g : B → List C}
(xs : List A) →
bind g (bind f xs) ≡ bind (bind g ∘ f) xs

associativity [] = refl
associativity {f = f} {g} (x ∷ xs) =

begin
concat (map g (f x ++ concat (map f xs)))
≡⟨ cong concat (map-++-commute g (f x)

(concat (map f xs))) ⟩
concat (map g (f x) ++ map g (concat (map f xs)))

≡⟨ concat-++-commute (map g (f x))
(map g (concat (map f xs))) ⟩

concat (map g (f x)) ++ concat (map g (concat (map f xs)))
≡⟨ cong (_++_ (concat (map g (f x)))) (associativity xs) ⟩

concat (map g (f x)) ++ concat (map (bind g ∘ f) xs)
�

where open Relation.Binary.PropositionalEquality.≡-Reasoning

unity-left : {A B : Set} {f : A → List B} (x : A) →
bind f (return x) ≡ f x

unity-left {f = f} x = ++-[] (f x)

6.4. References 93

unity-right : {A : Set} (xs : List A) → bind return xs ≡ xs
unity-right [] = refl
unity-right (x ∷ xs) = cong (_∷_ x) (unity-right xs)

6.3.3 Equivalence of Monads and Kleisli Triples in Agda
We shall not prove that monads and Kleisli triples are coextensive in Agda.
However, the definitions of the Monad' and Monad'' records include the re-
quired constructions discussed in Section 6.1.

6.4 References
The definitions of monad and Kleisli triple are based on (Mac Lane 1998,
p. 137) and (Moggi 1991, p. 58), respectively, and the theorems of the cor-
respondence between monads and Kleisli triples are based on (Manes 1976,
pp. 24, 26–29; Moggi 1991, p. 61).
Terminology. Although the common term for monads is monad, alterna-
tives include standard construction, which is the original term (Manes 1976,
p. 30), algebraic theory in monoid form (Manes 1976, p. 29), and triple
(Barr and Wells 2005, p. 83; Barr and Wells 2012, p. 372). The common
term for Kleisli triples is Kleisli triple, but another term is algebraic theory
in extension form (Manes 1976, p. 32), which is perhaps more precise but
rather outdated. We choose the common terms for the sake of simplicity
and for effectively distinguishing between monads and Kleisli triples.

Chapter 7

Algebras and Initial Algebras

“Curiouser and curiouser!”
—Carroll (2004, p. 23)

In this chapter we explore algebras and initial algebras over endofunc-
tors, and their relation to algebraic data types in Haskell. As motivation,
foldr is a standard function that encapsulates common patterns of recur-
sion concerning lists (Hutton 1999, pp. 355–356). The foldr function can
be defined as follows1:

foldr :: b -> (a -> b -> b) -> [a] -> b
foldr n c [] = n
foldr n c (x:xs) = c x (foldr n c xs)

That is, given a value n of type b and a function c of type a -> b -> b,
the function foldr n c of type [a] -> b replaces [] with n and (:) with
c. This amounts to saying that [a] and its constructors, [] and (:), yield
an algebra over an endofunctor, and, more important, that it constitutes
the initial algebra over the endofunctor. As it turns out, this fact uniquely
determines both the type signature and the definition of the foldr function.

This idea generalizes to algebraic data types in the sense that one such
type is the initial algebra over an endofunctor and that this fact uniquely
determines a function that encapsulates common patterns of recursion con-
cerning that type.

1Note that this is not the type signature of the standard Haskell foldr function.

95

96 7. Algebras and Initial Algebras

7.1 Algebras and Initial Algebras
We begin by describing algebras (over endofunctors) and algebra homomor-
phisms.

Definition 7.1. Let F ∶ 𝒞 → 𝒞 be an endofunctor in a category 𝒞. An F-al-
gebra (𝑎, 𝛼) is an object 𝑎, called the carrier of the algebra, and a morphism
𝛼 ∶ FO(𝑎) → 𝑎.

As examples, we consider the initial object of a category, and natural
numbers and lists in Set, which we shall describe again as examples of
algebras in Haskell.

Example 7.1.1. Let 𝒞 be a category with an initial object 0. Then (0, id0)
is an algebra over the identity functor (see Example 4.1.2), that is, an I-al-
gebra. In particular, in Set, (∅, id∅) is an I-algebra.

Example 7.1.2. In Set, the natural numbers ℕ = {0, 1, 2, ...}, along with
the functions zero ∶ 1 → ℕ and succ ∶ ℕ → ℕ, which can be joined to a
function [zero, succ] ∶ 1 + ℕ → ℕ, as illustrated by the diagram in Figure
7.1, yield an algebra (ℕ, [zero, succ]) over an endofunctor N ∶ Set → Set
whose object mapping assigns to each set 𝐴 a set

NO(𝐴) = 1 + 𝐴,

and whose morphism mapping assigns to each function 𝑓 ∶ 𝐴 → 𝐵 a function
NM(𝑓) ∶ 1 + 𝐴 → 1 + 𝐵 such that

NM(𝑓) ∘ 𝜄1 = 𝜄1 and NM(𝑓) ∘ 𝜄2 = 𝜄2 ∘ 𝑓 ,

that is,

NM(𝑓)(1, ()) = (1, ()) and NM(𝑓)(2, 𝑥) = (2, 𝑓(𝑥))

for all 𝑥 ∈ 𝐴 (see Examples 3.2.1 and 3.3.4 for initial objects and coproducts
in Set, respectively).

Example 7.1.3. In Set, lists can be represented as algebras over endofunc-
tors. For a given set 𝐴,

nil ∶ 1 → List(𝐴) and cons ∶ 𝐴 × List(𝐴) → List(𝐴)

can be joined to a function [nil, cons] ∶ 1 + 𝐴 × List(𝐴) → List(𝐴), as
illustrated by the diagram in Figure 7.2. In this way, (List(𝐴), [nil, cons])

7.1. Algebras and Initial Algebras 97

1 + ℕ1 ℕ

ℕ

𝜄1 𝜄2

zero succ[zero, succ]

Figure 7.1: Natural numbers in Set.

is an algebra over an endofunctor L𝐴 ∶ Set → Set whose object mapping
assigns to each set 𝐵 a set

L𝐴
O(𝐵) = 1 + 𝐴 × 𝐵,

and whose morphism mapping assigns to each function 𝑔 ∶ 𝐵 → 𝐶 a function
L𝐴

M(𝑔) ∶ 1 + 𝐴 × 𝐵 → 1 + 𝐴 × 𝐶 such that

L𝐴
M(𝑔)(1, ()) = (1, ()) and L𝐴

M(𝑔)(2, (𝑥, 𝑦)) = (2, (𝑥, 𝑔(𝑦)))

for all (𝑥, 𝑦) ∈ 𝐴×𝐵 (see Examples 3.2.1, 3.3.1, and 3.3.4 for initial objects,
products, and coproducts in Set, respectively).

1 + 𝐴 × List(𝐴)1 𝐴 × List(𝐴)

List(𝐴)

𝜄1 𝜄2

nil cons[nil, cons]

Figure 7.2: Lists in Set.

98 7. Algebras and Initial Algebras

Definition 7.2. Let F ∶ 𝒞 → 𝒞 be an endofunctor in a category 𝒞. If (𝑎, 𝛼)
and (𝑏, 𝛽) are F-algebras, an F-algebra homomorphism 𝑓 ∶ (𝑎, 𝛼) → (𝑏, 𝛽) is
a morphism 𝑓 ∶ 𝑎 → 𝑏 in 𝒞 such that

𝛽 ∘ FM(𝑓) = 𝑓 ∘ 𝛼, (7.1)

that is, the diagram in Figure 7.3 is commutative. In this case, we say that
dom(𝑓) = (𝑎, 𝛼) and cod(𝑓) = (𝑏, 𝛽).

FO(𝑎) 𝑎

FO(𝑏) 𝑏

𝛼

𝛽

𝑓FM(𝑓)

Figure 7.3: An F-algebra homomorphism.

Let us now define identity and composite algebra homomorphisms, which
will allow us to construct categories of algebras and algebra homomorphisms.

Definition 7.3. Let F ∶ 𝒞 → 𝒞 be an endofunctor in a category 𝒞. If (𝑎, 𝛼)
is an F-algebra, then its identity F-algebra homomorphism

id(𝑎,𝛼) ∶ (𝑎, 𝛼) → (𝑎, 𝛼)
is the identity morphism id𝑎 ∶ 𝑎 → 𝑎 in 𝒞. To see that this is an F-algebra
homomorphism, we prove (7.1) with 𝑓 = id(𝑎,𝛼):

𝛼 ∘ FM(id𝑎)
= (by (4.1))

𝛼 ∘ idFO(𝑎)
= (by (2.2) with 𝑓 = 𝛼)

id𝑎 ∘ 𝛼
Definition 7.4. Let F ∶ 𝒞 → 𝒞 be an endofunctor in a category 𝒞, and
(𝑎, 𝛼), (𝑏, 𝛽), and (𝑐, 𝛾) three F-algebras. Given two F-algebra homomor-
phisms, their composite F-algebra homomorphism 𝑔 ∘ 𝑓 ∶ (𝑎, 𝛼) → (𝑐, 𝛾) is
the composite morphism 𝑔 ∘ 𝑓 ∶ 𝑎 → 𝑐 in 𝒞. To see that this is an F-algebra
homomorphism, we prove (7.1) with 𝑓 = 𝑔 ∘ 𝑓 :

7.1. Algebras and Initial Algebras 99

𝛾 ∘ FM(𝑔 ∘ 𝑓)
= (by (4.2))

𝛾 ∘ FM(𝑔) ∘ FM(𝑓)
= (by (7.1) with 𝑓 = 𝑔)

𝑔 ∘ 𝛽 ∘ FM(𝑓)
= (by (7.1))

𝑔 ∘ 𝑓 ∘ 𝛼
Definition 7.5. Let F ∶ 𝒞 → 𝒞 be an endofunctor in a category 𝒞. Then
F-Alg is the category of F-algebras and F-algebra homomorphisms. Its ob-
jects are F-algebras, its morphisms are F-algebra homomorphisms, its iden-
tity morphisms are identity F-algebra homomorphisms, and its composite
morphisms are composite F-algebra homomorphisms. Since (2.1) and (2.2)
hold for 𝒞, they hold for F-Alg too.

Having constructed categories of algebras and algebra homomorphisms,
we move on to their initial objects (see Definition 3.2), that is, initial alge-
bras.
Definition 7.6. Let F ∶ 𝒞 → 𝒞 be an endofunctor in a category 𝒞. An
F-algebra (𝜇F, in) is the initial F-algebra of the category F-Alg if, for all
F-algebras (𝑎, 𝛼), there is a unique F-algebra homomorphism

⦇𝛼⦈ ∶ (𝜇F, in) → (𝑎, 𝛼),
that is, a morphism ⦇𝛼⦈ ∶ 𝜇F → 𝑎 in 𝒞 such that

𝛼 ∘ FM(⦇𝛼⦈) = ⦇𝛼⦈ ∘ in , (7.2)

or, equivalently, the diagram in Figure 7.4 is commutative. Such an F-al-
gebra homomorphism (that is, a unique F-algebra homomorphism from the
initial F-algebra) is called a catamorphism.

Intuitively, the initial algebra denotes the collection of constructor func-
tions for inductive data types. This statement is justified by a theorem,
which we shall describe and prove using the following lemma.
Lemma 7.1. Let F ∶ 𝒞 → 𝒞 be an endofunctor in a category 𝒞. If (𝜇F, in)
is the initial F-algebra of the category F-Alg, then

id𝜇F = ⦇in⦈ (7.3)

and, for all F-algebra homomorphisms 𝑓 ∶ (𝑎, 𝛼) → (𝑏, 𝛽),
𝑓 ∘ ⦇𝛼⦈ = ⦇𝛽⦈. (7.4)

100 7. Algebras and Initial Algebras

FO(𝜇F) 𝜇F

FO(𝑎) 𝑎

in

𝛼

⦇𝛼⦈FM(⦇𝛼⦈)

Figure 7.4: A catamorphism.

Proof. Since (𝜇F, in) is initial, then ⦇in⦈ and ⦇𝛽⦈ are unique, which proves
both equations. (For (7.4), see the diagram in Figure 7.5.)

𝜇FFO(𝜇F)

𝑎FO(𝑎)

𝑏FO(𝑏)

in

𝛼

𝛽

⦇𝛼⦈

𝑓

⦇𝛽⦈

FM(⦇𝛼⦈)

FM(𝑓)

Figure 7.5: The fusion law for a catamorphism.

The following theorem is “the formal justification on the identification
of inductive types with initial algebras” (Vene 2000, p. 17).

Theorem 7.2 (Lambek). Let F ∶ 𝒞 → 𝒞 be an endofunctor in a category
𝒞. If (𝜇F, in) is the initial F-algebra of the category F-Alg, then in is an
isomorphism with its inverse in−1 ∶ 𝜇F → FO(𝜇F) defined by

in−1 = ⦇FM(in)⦈. (7.5)

7.1. Algebras and Initial Algebras 101

Proof. We prove (3.1) with 𝑓 = in. In the first place:

in ∘ in−1

= (by (7.5))
in ∘ ⦇FM(in)⦈

= (by (7.4) with 𝑓 = in)
⦇in⦈

= (by (7.3))
id𝜇F

In the second place:

in−1 ∘ in
= (by (7.5))

⦇FM(in)⦈ ∘ in
= (by (7.2) with 𝛼 = FM(in))

FM(in) ∘ FM(⦇FM(in)⦈)
= (by (4.2) with 𝑓 = ⦇FM(in)⦈ and 𝑔 = in)

FM(in ∘ ⦇FM(in)⦈)
= (see above)

FM(id𝜇F)
= (by (4.1) with 𝑎 = 𝜇F)

idFO(𝜇F)

This theorem shows that the carrier of the initial algebra, 𝜇F, is isomor-
phic to FO(𝜇F), and, for this reason, the initial algebra is said to be “(up to
isomorphism) a fixed point of the functor” (Vene 2000, p. 18), but we shall
not focus on this terminology.

We have already discussed three examples of algebras (the initial object
of a category, natural numbers, and lists). We describe them again as initial
algebras.

Example 7.1.4. Let 𝒞 be a category with an initial object 0. Then (0, id0),
the I-algebra described in Example 7.1.1, is the initial I-algebra of the cat-
egory I-Alg. Indeed, given an I-algebra (𝑎, 𝛼), there is a unique I-algebra

102 7. Algebras and Initial Algebras

homomorphism ⦇𝛼⦈ ∶ (0, id0) → (𝑎, 𝛼) in which the underlying morphism
⦇𝛼⦈ ∶ 0 → 𝑎 in 𝒞 is the unique morphism given by the fact that 0 is an
initial object. The uniqueness of this morphism guarantees that (7.1) holds.
In particular, in Set, (∅, id∅) is the initial I-algebra of the category I-Alg.

Example 7.1.5. In Set, the N-algebra (ℕ, [zero, succ]) described in Exam-
ple 7.1.2 is the initial N-algebra of the category N-Alg. For an N-algebra
(𝐴, [𝑧, 𝑠]), that is, a set 𝐴 and functions 𝑧 ∶ 1 → 𝐴 and 𝑠 ∶ 𝐴 → 𝐴, we need
a unique N-algebra homomorphism ⦇[𝑧, 𝑠]⦈ or

fold(𝑧, 𝑠) ∶ (ℕ, [zero, succ]) → (𝐴, [𝑧, 𝑠]),

that is, a function fold(𝑧, 𝑠) ∶ ℕ → 𝐴 such that

fold(𝑧, 𝑠) ∘ [zero, succ] = [𝑧, 𝑠] ∘ NM(fold(𝑧, 𝑠)).

Without going into detail, this equation uniquely defines fold(𝑧, 𝑠) as

fold(𝑧, 𝑠)(zero()) = 𝑧()

and, for all 𝑛 ∈ ℕ,

fold(𝑧, 𝑠)(succ(𝑛)) = 𝑠(fold(𝑧, 𝑠)(𝑛)),

or, more succinctly,
fold(𝑧, 𝑠)(𝑛) = 𝑠𝑛(𝑧()),

which yields the required unique N-algebra homomorphism.
For instance, addition and multiplication of natural numbers can be

defined as folds add and mult ∶ ℕ × ℕ → ℕ such that, for all (𝑚, 𝑛) ∈ ℕ × ℕ,

add(𝑚, 𝑛) = fold(𝜆𝑥.𝑛, succ)(𝑚)

and
mult(𝑚, 𝑛) = fold(zero, 𝜆𝑥. add(𝑚, 𝑥))(𝑚),

respectively.

Example 7.1.6. In Set, for a set 𝐴, the L𝐴-algebra (List(𝐴), [nil, cons])
described in Example 7.1.3 is the initial algebra of the category L𝐴-Alg. Let
(𝐵, [𝑛, 𝑐]) be an algebra over L𝐴, that is, a set 𝐴 and functions 𝑛 ∶ 1 → 𝐵
and 𝑐 ∶ 𝐴 × 𝐵 → 𝐵. Then we need a unique L𝐴-algebra homomorphism

fold(𝑛, 𝑐) ∶ (List(𝐴), [nil, cons]) → (𝐵, [𝑛, 𝑐]),

7.2. Algebras and Initial Algebras in Haskell 103

that is, a function foldr(𝑛, 𝑐) ∶ List(𝐴) → 𝐵 such that

foldr(𝑛, 𝑐) ∘ [nil, cons] = [𝑛, 𝑐] ∘ L𝐴
M(foldr(𝑛, 𝑐)).

This equation uniquely defines fold(𝑛, 𝑐) as

foldr(𝑛, 𝑐)(nil()) = 𝑛()

and, for all (𝑥, 𝑥𝑠) ∈ 𝐴 × List(𝐴),

foldr(𝑛, 𝑐)(cons(𝑥, 𝑥𝑠)) = 𝑐(𝑥, foldr(𝑛, 𝑐)(𝑥𝑠)),

which yields the required unique L𝐴-algebra homomorphism.
As an example, the length of a list of elements of a set 𝐴 can be calculated

as a fold length ∶ List(𝐴) → ℕ such that

length = foldr(zero, 𝜆(𝑥, 𝑛). succ(𝑛)).

As another example, two lists of elements of a set 𝐴 can be appended by a
fold append ∶ List(𝐴) × List(𝐴) → List(𝐴) such that

append(𝑥𝑠, 𝑦𝑠) = foldr(𝜆𝑥.𝑦𝑠, cons)(𝑥𝑠)

for all (𝑥𝑠, 𝑦𝑠) ∈ List(𝐴)×List(𝐴). Finally, map(𝑓) ∶ List(𝐴) → List(𝐵) can
be defined as a fold

map(𝑓) = foldr(nil, 𝜆(𝑥, 𝑦𝑠). cons(𝑓(𝑥), 𝑦𝑠))

for all functions 𝑓 ∶ 𝐴 → 𝐵.

7.2 Algebras and Initial Algebras in Haskell
In the previous section, we identified inductive types with initial algebras. In
Haskell, such types are known as algebraic data types, which include recur-
sive types such as natural numbers and lists. When we define an algebraic
data type, its declaration introduces a new type or type constructor, and
zero or more data constructors. These data specify an initial algebra over
an endofunctor which can be inferred from the information at hand. Given
an algebraic data type, inferring such an endofunctor and proving that its
category of algebras has an initial object amounts to defining a fold function
for that particular type. In fact, such a function is uniquely determined by
the fact that the algebraic data type is an initial algebra.

As examples, we describe natural numbers and lists as initial algebras
over endofunctors in Haskell.

104 7. Algebras and Initial Algebras

Example 7.2.1. In Haskell, natural numbers can be defined as an algebraic
data type, as follows:

data Nat = Zero | Succ Nat

This declaration introduces a type Nat of kind *, and constructors Zero and
Succ with types

Zero :: Nat and Succ :: Nat -> Nat.

These data define an algebra over an endofunctor N:

data N a = Z | S a

instance Functor N where
fmap _ Z = Z
fmap f (S x) = S (f x)

In detail, this algebra is given by Nat, Zero, and Succ. Moreover, the algebra
in question is the initial algebra of the category of algebras over N:

fold :: a -> (a -> a) -> Nat -> a
fold z s Zero = z
fold z s (Succ n) = s (fold z s n)

In words, given an algebra over N, that is, a type a, a value z of type a, and
a function s of type a -> a, there is a unique function of type Nat -> a,
namely fold z s.

For instance, given values m and n of type Nat, we define the addition of
m and n using fold n Succ, that is, fold for the N-algebra specified by Nat,
n, and Succ, as follows:

add :: Nat -> Nat -> Nat
add m n = fold n Succ m

This definition might be easier to understand if we compare it to the one
yielded by using explicit recursion:

add Zero n = n
add (Succ m) n = Succ (add m n)

7.2. Algebras and Initial Algebras in Haskell 105

As another example, given values m and n of type Nat, we define the
multiplication of m and n using fold Zero (add n), that is, fold for the
N-algebra specified by Nat, Zero, and add n, as follows:

mult :: Nat -> Nat -> Nat
mult m n = fold Zero (add n) m

In this case, explicit recursion yields the following definition:

mult Zero n = Zero
mult (Succ m) n = add n (mult m n)

Alternatively, we can consider Nat and

either (\() -> Zero) Succ :: Either () Nat -> Nat

as an algebra over Either () (see Example 4.2.5). So, given a type b and

either (\() -> z) s :: Either () a -> a

we need a unique function fold such that

fold z s . either (\() -> Zero) Succ

and
either (\() -> z) s . fmap (fold z s)

are the same, but that is the above definition of fold.

Example 7.2.2. In Haskell, lists can be defined as an algebraic data type,
as follows:

data List a = Nil | Cons a (List a)

This declaration introduces a type constructor List of kind * -> *, and
constructors Nil and Cons with types

Nil :: List a and Cons :: a -> List a -> List a

for all types a of kind *. These data define an L-algebra:

106 7. Algebras and Initial Algebras

data L a b = N | C a b

instance Functor (L a) where
fmap _ N = N
fmap f (C x y) = C x (f y)

More precisely, given a concrete type a, List a, Nil, and Cons specify the
algebra being discussed. This algebra is the initial algebra of the category
of algebras over L:

foldr :: b -> (a -> b -> b) -> List a -> b
foldr n c Nil = n
foldr n c (Cons x xs) = c x (foldr n c xs)

That is to say, for a concrete type a, given an algebra over L, that is, a
concrete type b, a value n of type b, and a function c of type a -> b -> b,
there is a unique function of type List a -> b, namely foldr n c.

As an example, the length of a list of values of a type a can be calculated
using foldr, as follows:

length :: List a -> Nat
length = foldr Zero (_ -> Succ)

As another example, two lists xs and ys of values of a type a can be appended
using fold for the L-algebra specified by List a, ys, and Cons:

append :: List a -> List a -> List a
append xs ys = (foldr ys Cons) xs

Finally, given concrete types a and b, map f can be defined as a foldr for all
functions f of type a -> b, as follows:

map :: (a -> b) -> List a -> List b
map f = foldr Nil (Cons . f)

Each of these definitions might be easier to understand if we compare them
to the ones yielded by using explicit recursion:

7.3. References 107

length Nil = Zero
length (Cons _ xs) = Succ (length xs)

append Nil ys = ys
append (Cons x xs) ys = Cons x (append xs ys)

map _ Nil = Nil
map f (Cons x xs) = Cons (f x) (map f xs)

7.3 References
This chapter is based on (Awodey 2010, § 10.5; Bird and de Moor 1997,
§ 2.6; Vene 2000, § 2.1). The definition of algebras over endofunctors, which
is a simpler description of algebras over monads, is also based on (Mac Lane
1998, p. 140; Poigné 1992, pp. 595–596).

Chapter 8

Conclusions

“What dreadful nonsense we are talking!”
—Carroll (2004, p. 255)

“You may call it ‘nonsense’ if you like, but
I’ve heard nonsense, compared with which
that would be as sensible as a dictionary!”

—Carroll (2004, p. 173)

Our main objective with this project was to study some of the applica-
tions of category theory to functional programming, particularly in Haskell
and Agda, and, more specifically, to describe and explain the concepts of
category theory needed for conceptualizing and better understanding func-
tors, polymorphism, monads, and algebraic data types, which we did in
Chapters 4, 5, 6, and 7, respectively. In Chapter 2, we identified categories
as the starting point for relating category theory to functional programming.
In the case of algebraic data types and, more usefully, folds, we identified
algebras and initial algebras over endofunctors as the required concepts for
satisfying our main goal; in the case of functors, the notions of functor and
endofunctor; in the case of monads, the concepts of monad and Kleisli triple;
and, in the case of polymorphism or, more precisely, parametric polymor-
phism, natural transformations.

Obviously, we did not cover all of category theory. For instance, we did
not deal with concepts such as adjoints, epimorphisms, limits, monomor-
phisms, and universal constructions, which were listed in the project pro-
posal, but did not answer our purpose. Having said that, we did cover the
trinity of concepts category, functor, and natural transformation, which is
the foundation of all category theory (Mac Lane 1998, p. vii), and which

109

110 8. Conclusions

creates an opportunity for a deeper understanding of the subject.
Additionally, some of the applications of category theory to functional

programming are not as straightforward as suggested here. For example,
polymorphic functions actually correspond to lax natural transformations
(Wadler 1989, p. 350), and algebraic data types in Haskell correspond to
initial algebras and terminal coalgebras over endofunctors (Vene 2000, § 2),
but such concepts go beyond the scope of this project. However, our use
of category theory seems to be appropriate and useful, especially from the
standpoint of functional programming.

Although subjective, we believe that this project provides some inter-
esting examples of how to take advantage of category theory in functional
programming and programming in general, as well as a way to become a
better programmer.

Needless to say, the ideas of category theory might be difficult to under-
stand at first. As a matter of fact, Bird and de Moor (1997, p. 25) claim
that “one does not so much learn category theory as absorb it over a period
of time.” We claim that it is definitely worth it.

8.1 Future Work

All unanswered questions and concepts beyond the scope of this project
could be considered as suggestions for future work. For instance, the ques-
tions of Haskell’s and Agda’s categories, the existence of initial algebras over
endofunctors, and others. We describe some ideas which we find interesting
and appropriate.

8.1.1 Adjoints

Category theory is based on the concepts of categories, functors, and nat-
ural transformations. Even though these ideas are important, a fundamen-
tal notion of category theory is adjoints (Marquis 2013, p. 11), which “arise
everywhere” (Mac Lane 1998, p. vii). Taking into account our approach,
can we study the applications of adjoints with the purpose of better under-
standing functional programming? Based on (Barr and Wells 2012, § 13;
Elkins 2009, pp. 79–81; Pierce 1991, § 2.4; Rydeheard 1986a; Rydeheard
and Burstall 1988, § 6), the answer seems to be yes. In addition, Awodey
(2010, § 9) and Mac Lane (1998, § IV) seem to offer a good starting point.

8.1. Future Work 111

8.1.2 Applicative functors
Based on (McBride and Paterson 2008), we identified and studied monoidal
categories and functors in order to be able to understand applicative functors
from a category-theoretical point of view. We could use our results in a
future project, which seems to be a very relevant next step, particularly
in the context of the “current, and very likely to succeed,” Haskell 2014
Applicative => Monad proposal1, which adds an Applicative constraint to
the Monad type class and promotes join to Monad, which we briefly discussed
in Remark 6.5.

8.1.3 Categories
In Section 2.2, we described Hask, the category of Haskell types and func-
tions, in order to be able to relate category theory to functional program-
ming. We could use the Category type class instead (Yorgey 2009, pp. 49–51;
Elkins 2009, pp. 74–75):

class Category cat where
id :: cat a a
(.) :: cat b c -> cat a b -> cat a c

instance Category (->) where
id = Prelude.id
(.) = (Prelude..)

Likewise, we could study Kleisli categories (Moggi 1991, pp. 59–60) in terms
of this type class, which might be a more intuitive way to justify the Kleisli
triple laws. In addition, the Category class would lead us to Arrow, which is
a generalization of functions (Yorgey 2009, pp. 51–57).

8.1.4 Folds
In Chapter 7, we examined catamorphisms and their relation to the foldr
function for lists. Can we apply the results of that chapter to foldl and
folds in general? In particular, can we use algebras and initial algebras over
endofunctors for conceptualizing the Foldable (Yorgey 2009, pp. 44–47) and
Traversable (McBride and Paterson 2008, § 3; Yorgey 2009, pp. 47–49) type
classes?

1http://www.haskell.org/haskellwiki/Functor-Applicative-Monad_Proposal.

http://www.haskell.org/haskellwiki/Functor-Applicative-Monad_Proposal

112 8. Conclusions

8.1.5 Monoids
As an alternative to the ideas of Section 8.1.1, a “fundamental notion of
category theory is that of a monoid” (Mac Lane 1998, p. vii), as described
in Example 2.1.4. In Haskell, monoids are defined by the Monoid type class:

class Monoid a where
mempty :: a
mappend :: a -> a -> a

In connection with Remark 6.1 and Section 8.1.2, studying monoids and
their relation to monads seems like a pertinent complement to this project.
As basis for this study, we have identified (Mac Lane 1998, § VII; Yorgey
2009, pp. 39–44).

Bibliography

Adámek, Jiří, Horst Herrlich, and George E. Strecker (2006). Abstract and
Concrete Categories: The Joy of Cats. Reprints in Theory and Appli-
cations of Categories 17 (cit. on p. 5). Repr. of Abstract and Concrete
Categories. The Joy of Cats. Wiley, 1990.

The Agda Team (2014). The Agda Wiki. url: http://wiki.portal.chalmers.
se/agda/ (cit. on p. 1).

Awodey, Steve (2010). Category Theory. 2nd ed. Vol. 52. Oxford Logic
Guides. Oxford University Press (cit. on pp. 4, 13, 19, 107, 110).

Barr, Michael and Charles Wells (2005). Toposes, Triples and Theories.
Reprints in Theory and Applications of Categories 12 (cit. on pp. 5,
93). Repr. of Toposes, Triples and Theories. Vol. 278. Grundlehren der
mathematischen Wissenschaften. Springer, 1984.

— (2012). Category Theory for Computing Science. Reprints in Theory and
Applications of Categories 22 (cit. on pp. 5, 93, 110). Repr. of Category
Theory for Computing Science. 3rd ed. Centre de recherches mathéma-
tiques, 1999.

Baudelaire, Charles (1857). Abel et Caïn. In: Le Fleurs du mal. Poulet-
Malassis et de Broise (cit. on p. 1).

Bird, Richard and Oege de Moor (1997). Algebra of Programming. Vol. 100.
Prentice Hall International Series in Computer Science. Prentice Hall
(cit. on pp. 4, 58, 107, 110).

Bove, Ana and Peter Dybjer (2009). Dependent Types at Work. In: Lan-
guage Engineering and Rigorous Software Development (2008). Ed. by
Ana Bove et al. LNCS 5520. Springer, pp. 57–99 (cit. on pp. 5, 17).

Cardelli, Luca and Peter Wegner (1985). On Understanding Types, Data
Abstraction, and Polymorphism. In: Computing Surveys 17.4, pp. 471–
522 (cit. on p. 53).

Carroll, Lewis (2004). Alice’s Adventures in Wonderland and Through the
Looking-Glass. Barnes & Noble Classics. Barnes & Noble (cit. on pp. ii,
9, 95, 109).

113

http://wiki.portal.chalmers.se/agda/
http://wiki.portal.chalmers.se/agda/

114 Bibliography

Danielsson, Nils Anders et al. (Jan. 29, 2013). The Agda standard library.
Version 0.7. url: http://wiki.portal.chalmers.se/agda/ (visited on
04/03/2014) (cit. on pp. 6, 44).

Eilenberg, Samuel and Saunders MacLane (Oct. 1942). Group Extensions
and Homology. In: Annals of Mathematics 43.4, pp. 757–831 (cit. on
p. 4).

— (Sept. 1945). General Theory of Natural Equivalences. In: Transactions
of the American Mathematical Society 58.2, pp. 231–294 (cit. on pp. 4,
19).

Elkins, Derek (2009). Calculating Monads with Category Theory. In: The
Monad.Reader 13, pp. 73–91 (cit. on pp. 1, 5, 19, 58, 110, 111).

God (1769). Bible. King James Version (cit. on p. 7).
Goguen, Joseph A. (1991). A Categorical Manifesto. In: Mathematical Struc-

tures in Computer Science 1.1, pp. 49–67 (cit. on p. 1).
Hutton, Graham (1999). A Tutorial on the Universality and Expressiveness

of Fold. In: Journal of Functional Programming 9.4, pp. 355–372 (cit. on
p. 95).

Jeuring, Johan, Patrik Jansson, and Cláudio Amaral (2012). Testing Type
Class Laws. In: Haskell Symposium (2012). ACM, pp. 49–60 (cit. on
p. 34).

Kmett, Edward A. (2012). The void package. Version 0.5.6. url: http :
//hackage.haskell.org/package/void-0.5.6 (visited on 03/13/2014)
(cit. on p. 22).

— (2014). The semigroupoids package. Version 4.0.1. url: http://hackage.
haskell.org/package/semigroupoids-4.0.1 (visited on 03/29/2014) (cit.
on p. 84).

Leibniz, Gottfried Wilhelm (1714). Monadologie (cit. on p. 59).
Lipovača, Miran (2011). Learn You a Haskell for Great Good! A Beginner’s

Guide. No Starch Press. url: http://learnyouahaskell.com (cit. on
pp. 5, 29, 47, 81).

Mac Lane, Saunders (1998). Categories for the Working Mathematician.
2nd ed. Vol. 5. Graduate Texts in Mathematics. Springer (cit. on pp. 1,
3, 4, 13, 19, 27, 29, 47, 49, 58, 61, 93, 107, 109, 110, 112).

Manes, Ernest G. (1976). Algebraic Theories. Vol. 26. Graduate Texts in
Mathematics. Springer (cit. on pp. 64, 93).

Marlow, Simon, ed. (2010). Haskell 2010 Language Report. url: http://
www.haskell.org/onlinereport/haskell2010/ (cit. on p. 29).

Marquis, Jean-Pierre (2013). “Category Theory”. In: Stanford Encyclopedia
of Philosophy. Ed. by Edward N. Zalta. Summer 2013 Edition. Meta-

http://wiki.portal.chalmers.se/agda/
http://hackage.haskell.org/package/void-0.5.6
http://hackage.haskell.org/package/void-0.5.6
http://hackage.haskell.org/package/semigroupoids-4.0.1
http://hackage.haskell.org/package/semigroupoids-4.0.1
http://learnyouahaskell.com
http://www.haskell.org/onlinereport/haskell2010/
http://www.haskell.org/onlinereport/haskell2010/

Bibliography 115

physics Research Lab. url: http : / / plato . stanford . edu / entries /
category-theory (cit. on pp. 1, 4, 32, 47, 58, 110).

McBride, Conor and Ross Paterson (2008). Applicative Programming with
Effects. In: Journal of Functional Programming 18.1, pp. 1–13 (cit. on
p. 111).

Milner, Robin (1984). A Proposal for Standard ML. In: LISP and Functional
Programming (1984). ACM, pp. 184–197 (cit. on p. 1).

Moggi, Eugenio (1989). An Abstract View of Programming Languages. Tech.
rep. University of Edinburgh (cit. on p. 60).

— (1991). Notions of Computation and Monads. In: Information and Com-
putation 93.1, pp. 55–92 (cit. on pp. 60, 63, 64, 93, 111).

Norell, Ulf (2007). Towards a Practical Programming Language Based on
Dependent Type Theory. PhD thesis. Chalmers University of Technology
and University of Gothenburg (cit. on p. 1).

— (2009). Dependently Typed Programming in Agda. In: Advanced Func-
tional Programming (2008). Ed. by Pieter Koopman, Rinus Plasmeijer,
and Doaitse Swierstra. LNCS 5832. Springer, pp. 230–266 (cit. on pp. 5,
17).

O’Sullivan, Bryan, John Goerzen, and Don Stewart (2008). Real World
Haskell. O’Reilly Media. url: http://book.realworldhaskell.org (cit.
on pp. 5, 59).

Peyton Jones, Simon, ed. (2003). Haskell 98 Language and Libraries: The
Revised Report. Cambridge University Press (cit. on pp. 1, 15, 30, 81).

Pierce, Benjamin C. (1991). Basic Category Theory for Computer Scientists.
Foundations of Computing. MIT Press (cit. on pp. 1, 4, 19, 27, 110).

Pitt, David (1986). Categories. In: Category Theory and Computer Pro-
gramming (1985). Ed. by David Pitt et al. LNCS 240. Springer, pp. 6–
15 (cit. on p. 19).

Pitt, David et al., eds. (1986). Category Theory and Computer Programming
(1985). LNCS 240. Springer.

Poigné, Axel (1992). “Basic Category Theory”. In: Handbook of Logic in
Computer Science. Ed. by S. Abramsky, Dov M. Gabbay, and T. S. E.
Maibaum. Vol. 1 (Background: Mathematical Structures). Clarendon
Press, pp. 413–640 (cit. on pp. 1, 4, 10, 19, 27, 47, 49, 58, 107).

Rydeheard, David E. (1986a). Adjunctions. In: Category Theory and Com-
puter Programming (1985). Ed. by David Pitt et al. LNCS 240. Springer,
pp. 51–57 (cit. on p. 110).

— (1986b). Functors and Natural Transformations. In: Category Theory
and Computer Programming (1985). Ed. by David Pitt et al. LNCS 240.
Springer, pp. 43–50 (cit. on p. 58).

http://plato.stanford.edu/entries/category-theory
http://plato.stanford.edu/entries/category-theory
http://book.realworldhaskell.org

116 Bibliography

Rydeheard, David E. and R. M. Burstall (1988). Computational Category
Theory. Prentice Hall International Series in Computer Science. Prentice
Hall (cit. on pp. 58, 110).

Saramago, José (2006). As Pequenas Memórias. Caminho (cit. on p. vii).
— (2008). A Viagem do Elefante. Caminho (cit. on p. vii).
Sturrock, Donald (2010). Storyteller: The Authorized Biography of Roald

Dahl. Simon & Schuster (cit. on p. 117).
Turner, D. A. (1985). Miranda: A Non-strict Functional Language with Poly-

morphic Types. In: Functional Programming Languages and Computer
Architecture (1985). Ed. by Jean-Pierre Jouannaud. LNCS 201. Springer,
pp. 1–16 (cit. on p. 1).

Vene, Varmo (2000). Categorical Programming with Inductive and Coinduc-
tive Types. PhD thesis. University of Tartu (cit. on pp. 100, 101, 107,
110).

Wadler, Philip (1989). Theorems for Free! In: Functional Programming Lan-
guages and Computer Architecture (1989). ACM Press, pp. 347–359 (cit.
on pp. 53, 54, 58, 110).

Weisstein, Eric W., ed. (2014). Wolfram MathWorld. url: http://mathworld.
wolfram.com (visited on 04/03/2014) (cit. on p. 5).

Wolfram, Stephen (2002). A New Kind of Science. Wolfram Media (cit. on
p. 1).

Yorgey, Brent (2009). The Typeclassopedia. In: The Monad.Reader 13, pp. 17–
68. url: http://www.haskell.org/haskellwiki/Typeclassopedia (cit. on
pp. 1, 5, 19, 33, 47, 81, 111, 112).

http://mathworld.wolfram.com
http://mathworld.wolfram.com
http://www.haskell.org/haskellwiki/Typeclassopedia

“Ow, fuck!”
—Sturrock (2010, p. 561)

	Acknowledgements
	Abstract
	Contents
	Introduction
	Summary of the Project
	Audience and Prerequisites
	Overview of the Project
	References
	Notes

	Categories
	Categories
	A Category for Haskell
	A Category for Agda
	References

	Constructions
	Isomorphisms
	Initial and Terminal Objects
	Products and Coproducts
	References

	Functors
	Functors
	Functors in Haskell
	Functors in Agda
	References

	Natural Transformations
	Natural Transformations
	Natural Transformations in Haskell
	References

	Monads and Kleisli Triples
	Monads and Kleisli Triples
	Monads
	Kleisli Triples
	Equivalence of Monads and Kleisli Triples

	Monads and Kleisli Triples in Haskell
	Monads in Haskell
	Kleisli Triples in Haskell
	Equivalence of Monads and Kleisli Triples in Haskell

	Monads and Kleisli Triples in Agda
	Monads in Agda
	Kleisli Triples in Agda
	Equivalence of Monads and Kleisli Triples in Agda

	References

	Algebras and Initial Algebras
	Algebras and Initial Algebras
	Algebras and Initial Algebras in Haskell
	References

	Conclusions
	Future Work
	Adjoints
	Applicative functors
	Categories
	Folds
	Monoids

	Bibliography

